فلاتر پوسته های استوانه ای هدفمند تحت فشار در جریان مافوق صوت بر پایه تئوری فلوگه

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 نویسنده مسئول، استاد، گروه مهندسی مکانیک، دانشکده فنی، دانشگاه گیلان

2 استادیار، گروه مهندسی مکانیک، دانشکده فنی، دانشگاه گیلان

3 دانشجوی کارشناسی ارشد، گروه مهندسی مکانیک، دانشکده فنی، دانشگاه گیلان

4 دانشجوی دکترا، گروه مهندسی مکانیک، دانشکده فنی، دانشگاه گیلان

چکیده

در این مقاله پدیده­ی فلاتر یک پوسته­ی استوانه­ای هدفمند (FGM) با تکیه گاه­های ساده تحت بار آیرودینامیکی و حرارتی همراه با اعمال فشار داخلی به پوسته، مورد مطالعه قرار گرفته است. کسر حجمی مواد تشکیل دهنده­ی پوسته از یک قانون توانی ساده در راستای ضخامت تبعیت می­کند. بار آیرودینامیک در تحلیل بکار رفته توسط تئوری مرتبه اول پتانسیل (پیستون) به صورت خطی و با در نظر گرفتن ترم تصحیح، مشخص شده است. روابط کرنش- جابجایی و معادلات حرکت بر اساس تئوری پوسته­ی فلوگه تعیین شده و تنش­های اولیه­ی ملحوظ در معادلات حرکت با حل معادلات تعادل بدست آمده­اند.
با بکارگیری روش گلرکین، معادلات حاکم بر پوسته حل شده­اند. همچنین اثر توزیع کسر حجمی، تغییرات دما و فشار بر مرز فلاتر و پاسخ زمانی سیستم مورد بررسی قرار گرفته است.

کلیدواژه‌ها


[1]   Müller, E., Drašar, Č., Schilz, J., and Kaysser, W.A, "Functionally Graded Materials for Sensor and Energy Applications", Materials Science and Engineering, Vol. 362, pp. 17-39, (2003).
 
[2]   Lee, W.Y., Stinton, D.P., Berndt, C.C., Erdogan, F., Lee, Y.D., and Mutasim, Z., "Concept of Functionally Graded Materials for Advanced Thermal Barrier Coating Applications", Journal of the American Ceramic Society, Vol. 79, pp. 3003–3012, (1996).
 

[3]   Loy, C.T., Lam, K.Y., and Reddy, J.N., "Vibration of Functionally Graded Cylindrical Shells", International Journal of Mechanical Sciences, Vol. 41, pp. 309–324, (1999).

 
[4]   Olson, M.D., and Fung, Y.C., "Comparing Theory and Experiment for the Supersonic Flutter of Circular Cylindrical Shells", AIAA Journal, Vol. 5, No. 10, pp. 1849–1856, (1967).
 
[5]   Barr, G.W., and Stearman, R.O., "Aeroelastic Stability Characteristics of Cylindrical Shells Considering Imperfections and Edge Constraint", AIAA Journal, Vol. 7, pp. 912–919, (1968).
 
[6]   Ganapathi, M., Varadan, T.K., and Jijen, J., "Field-consistent Element Applied to Flutter Analysis of Circular Cylindrical Shells", Journal of Sound Vibration, Vol. 171, No. 4, pp. 509–527, (1994).
[7]   Pidaparti, R.M.V., and Yang Henry, T.Y., "Supersonic Flutter Analysis of Composite Plates and Shells", AIAA Journal, Vol. 31, No. 6, pp. 1109–1117, (1993). 
 
[8]   Haddadpour, H., Mahmoudkhani, S., and Navazi, H.M., "Supersonic Flutter Prediction of Functionally Graded Cylindrical Shells", Journal of Composite Structures Vol. 83, pp. 391–398, (2008).
 
[9]    Prakash, T., and Ganapathi, M., "Supersonic Flutter Characteristics of Functionally Graded Flat Panels Including Thermal Effects", Journal of Composite Structures, Vol. 72, No. 1, pp. 8–10, (2006).
 
[10]  Sabri, F., and Lakis, A.A., "Finite Element Method Applied to Supersonic Flutter of Circular Cylindrical Shells", AIAA Journal, Vol. 48, No. 1, pp. 78-81, (2010).
 
[11]  Shen, H.S., "Postbuckling of Axially Loaded FGM Hybrid Cylindrical Shells in Thermal Environments", Composites Science and Technology, Vol. 65, pp. 1675–1690, (2005).
 
[12]  Shen, H.S., and Noda, N., "Postbuckling of FGM Cylindrical Shells under Combined Axial and Radial Mechanical Loads in Thermal Environments", International Journal of Solids and Structures, Vol. 42,  pp. 4641–4662, (2005).
 
[13]   Shen, H.S., "Thermal Postbuckling Behavior of Functionally Graded Cylindrical Shells with Temperature-dependent Properties", International Journal of Solids and Structures, Vol. 41, pp. 1961–1974, (2004).
 
[14]  Shen, H.S., "Postbuckling Analysis of Pressure-loaded Functionally Graded Cylindrical Shells in Thermal Environments", Engineering Structures, Vol. 25, pp. 487–97, (2003).
 
[15]  Krumhaar, H., "Supersonic Flutter of a Circular Cylindrical Shell of Finite Length in an Axisymmetrical Mode", International Journal of Solids and Structures, Vol. 1, No. 1, (1965).
 
[16]  Touloukian, Y.S., "Thermophysical Properties of High Temperature Solid Materials", McMillan, New York, (1967).
 
[17]  Reddy, J.N., and Chin, C.D., "Thermomechanical Analysis of Functionally Graded Cylinders and Plates", Journal of Thermal Stresses, Vol. 21, No. 6, (1998).
 
[18]  Dowell, E.H., "Aeroelasticity of Plates and Shells", [Book], Leyden : Noordhoff International, (1975).
 
[19]  Krumhaar, H., "The Accuracy of Linear Piston Theory when Applied to Cylindrical Shells", AIAA Journal, Vol. 1, No. 6, pp. 1448–1449, (1963).
 
[20] Amabili, M., and Pellicano, F., "Multimode Approach to Nonlinear Supersonic Flutter of Imperfect Circular Cylindrical Shells", Journal of Applied Mechanics, Vol. 69, pp. 117–129, (2002).
 
[21] Kostas, P., and Soldatos, "A Flugge-type Theory for the Analysis of Anisotropic Laminated Non-circular Cylindrical Shells", International Journal of Solids and Structures, Vol. 20, Issue 2, pp. 107-120, (1984)
 
[22] Baruch, M., Harari, O., and Singer, J., "Influence of in-plane Boundary Conditions on the Stability of Conical Shells under Hydrostatic Pressure", Israel Journal of Technology, Vol. 5, No. 1–2, pp. 12–24, (1967).
 
[23] Weller, T., Baruch M., and Singer, J., "Influence of In-plane Boundary Conditions on Buckling of Ring-Stiffened Cylindrical Shells", Scientific Report No. 10, Department of Aeronautical Engineering Technion, Israel Institute of Technology - TAE Report No. 101, (1970).
 
 [24] Leissa, A.W., "Vibration of
 
Shells", Ohio State University, National Aeronautics and Space Administration, (1973).
 
 [25] Baruch, M., Harari, O., and Singer, J., "Low Buckling Loads of Axially Compressed Conical Shells", J. Appl. Mech. Vol. 37, No. 2, pp. 384-392, (1970)