مطالعۀ ارتعاشات آزاد و ناپایداری نانولوله های کربنی حامل سیال با استفاده از مدل پوستۀ استوانه ای

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 استاد، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه فردوسی مشهد

2 دانشجوی کارشناسی ارشد، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه فردوسی مشهد

چکیده

در این مقاله به منظور مطالعۀ ارتعاشات آزاد و ناپایداری نانولوله­های کربنی تک جدارۀ حامل سیال، براساس مدل پوستۀ استوانه­ای دانل و تئوری اصلاح شدۀ تنش­کوپل مدل جدیدی ارائه می­گردد. این مدل جدید تنها دارای یک پارامتر مقیاس طول ماده بوده و قادر است اثرات اندازه لولۀ کربنی در مقیاس نانو را لحاظ کند. معادلات دینامیکی حاکم و شرایط مرزی متناظر با کمک اصل همیلتون بدست آمده و با استفاده از روش عددی مربعات تفاضلی اثرات سیال داخلی و سرعت آن، پارامتر مقیاس طول ماده، تغییرات دما، بستر الاستیکی و شرایط مرزی مختلف بر فرکانس و محدودۀ پایداری نانولولۀ کربنی مذکور مورد مطالعه و بحث قرار می­گیرد.

کلیدواژه‌ها


[1] Iijima, S., "Helical Microtubules of Graphitic Carbon", Nature, Vol. 354, pp. 56–58, (1991).
 
[2] Wang, Q., Liew, K.M., and Duan, W.H., "Modeling of the Mechanical Instability of Carbon Nanotubes", Carbon, Vol. 46, pp. 285–290, (2008).
 
[3] Yan, Y., He, X.Q., Zhang, L.X., and Wang, C.M., "Dynamic behavior of Triple-walled Carbon Nanotubes Conveying Fluid ", Journal of Sound and Vibration, Vol. 319, pp. 1003–1018, (2009).
 
[4] Natsuki, T., Lei, X.W., Ni, Q.Q., and Endo, M., "Free Vibration Characteristics of Double-walled Carbon Nanotubes Embedded in an Wlastic Medium", Physics Letters A, Vol. 374, pp. 2670–2674, (2010).
 
[5] Foldvari, M., and Bagonluri, M. "Carbon Nanotubes as Functional Excipients for Nanomedicines: II. Drug Delivery and Biocompatibility Issues", Nanomedicine: Nanotechnology, Biology, and Medicine, Vol. 4, pp. 183-200, (2008).
 
[6] Khosravian, N., and Rafii-Tabar, H., "Computational Modelling of a Non-viscous Fluid Flow in a Multi-walled Carbon Nanotube Modelled as a Timoshenko Beam", Nanotechnology, Vol. 19, pp. 275703, (2008).
 
[7] Yoon, J., Ru, C.Q., and Mioduchowski, A., "Vibration and Instability of Carbon Nanotubes Conveying Fluid", Composite Science and Technology, Vol. 65, pp. 1326–1336, (2005).
 
[8] Yoon, C.Q., Ru, A., and Mioduchowski, A., "Flow-induced Flutter Instability of Cantilever Carbon Nanotubes", Journal of Solids and Structures, Vol. 43, pp. 3337–3349, (2006).
 
[9] Wang, X.Y., Wang, X., and Sheng, G.G., "The Coupling Vibration of Fluid-filled Carbon Nanotubes", Journal of Physics Letters D: Apply Physics, Vol. 40, pp. 2563-2572, (2007).
 
[10] Wong, E.W., Sheehan, P.E., and Lieber, C.M., "Nanobeam Mechanics: Elasticity, Strength and Toughness of Nano-rods and Nanotubes", Science, Vol. 277, pp. 1971–1974, (1997).
 
[11] Zhang, Y.Q., Liu, X., and Zhao, J.H., "Influence of Temperature Change on Column Buckling of Multi Walled Carbon Nanotubes", Physics Letters A, Vol. 372, pp. 1676–1681, (2008).
 
[12] Yang, Y., Zhang, L., and Lim, C.W., "Wave Propagation in Double-walled Carbon Nanotubes on a Novel Analytically Nonlocal Timoshenko-beam Model", Journal of Sound and Vibration, Vol. 330., pp. 1704–1717, (2011).
 
[13] Elishakoff, I., and Pentaras, D., "Rapid Communication Fundamental Natural Frequencies of Double-walled Carbon Nanotubes", Journal of Sound and Vibration, Vol. 322, pp. 652–664, (2009).
 
[14] Yoon, J., Ru, C.Q., and Mioduchowski, A., "Vibration and Instability of Carbon Nanotubes Conveying Fluid", Composites Science and Technology, Vol. 65, pp. 1326–1336, (2005).
 
[15] Ahangar, S., Rezazadeh, G.h., Shabani, R., Ahmadi, G., and Toloei, A., "On the Stability of a Microbeam Conveying Fluid Considering Modified Couple Stress Theory", International Journal of Mechanics and Materials in Design, Vol. 7, pp. 327–342, (2011).
 
[16] Zhen, Y., and Fang, B., "Thermal–mechanical and Nonlocal Elastic Vibration of Single-walled Carbon Nanotubes Conveying Fluid", Computational Materials Science, Vol. 49, pp. 276–282, (2010).
 
[17] Wang, L., "Size-dependent Vibration Characteristics of Fluid-conveying Microtubes"Journal of Fluid Structure, Vol. 26, pp. 675-684, (2010).
 
[18] Lee, H.L., and Chang, W.J., "Free Transverse Vibration of the Fluid-conveying Single-walled Carbon Nanotube using Nonlocal Elastic Theory", Journal of Apply Physics, Vol. 103, pp. 024302, (2008).
 
[19] Ke, L.L., and Wang, Y.S., "Flow-induced Vibration and Instability of Embedded Double-walled Carbon Nanotubes Based on a Modified Couple Stress Theory", Physica E, Vol. 43, pp. 1031–1039, (2011).
 
[20] Yang, F., Chong, A.C.M., Lam, D.C.C., and Tong, P., "Couple Stress Based Strain Gradient Theory for Elasticity", International Journal of Solids Structure, Vol. 39, pp. 2731–2743, (2002).
 
[21] Ma, H.M., Gao, X.L., and Reddy, J.N, "A Microstructure-dependent Timoshenko Beam Model Based on a Modified Couple Stress Theory", Journal of the Mechanics and Physics of Solids, Vol. 56, pp. 3379-3391, (2008).
 
[22] Chong, A.C.M., Yang, F., Lam, D.C.C., and Tong, P., "Torsion and Bending of Micron-scaled Structures", Journal of Materials Research, Vol. 16, pp. 1052-1058, (2001).
 
[23] Stolken, J.S., and Evans, A.G., "A Microbend Test Method for Measuring the Plasticity Length Scale", Acta Materialia, Vol. 46, pp. 5109-5115, (1998).
 
[24] Paliwal, D.N., Pandey, R.K., and Nath, T., "Free Vibrations of Circular Cylindrical Shell on Winkler and Pasternak Foundations",International Journal of Pressure Vessels and Piping, Vol. 69, pp. 79–89, (1996).
 
[25] Amabili, M., "Nonlinear Vibrations and Stability of Shells and Plates", Cambridge University Press, New York, (2008).
 
[26] Bakhtiari-Nejad, F., and Mousavi-Bideleh, M., "Nonlinear Free Vibration Analysis of Prestressed Circular Cylindrical Shells on the Winkler/Pasternak Foundation", Thin Walled Structures, Vol. 53, pp. 26–39, (2012).
 
[27] Karagiozis, K.N., Amabili, M., Padoussis, M.P., and Misra, A.K., "Nonlinear Vibrations of Fluid-filled Clamped Circular Cylindrical Shells", Journal of Fluids and Structures, Vol. 21, pp. 579–595, (2005).
 
[28] Ghorbanpour Arani, A., Amir, S., Shajari, A.R., and Mozdianfard, M.R., "Electro-thermo-mechanical Buckling of DWBNNTs Embedded in Bundle of CNTs using Nonlocal Piezoelasticity Cylindrical Shell Theory", Composites: Part B, Vol. 43, pp. 195–203, (2012).
 
[29] Bellman, R., Kashef, B.G., and Casti, J., "Differential Guadrature: a Technique for the Rapid Solution of Nonlinear Partial Differential Equations", Journal of Computational Physic, Vol. 10, pp. 40–52, (1972).
 
[30] Shu, C., "Differential Quadrature and its Application in Engineering", Springer-verlag, London, (2000).
 
[31] Shu, C., and Richards, B.E., "Application of Generalized Differential Quadrature to Solve Two Dimensional Incompressible Navier-Stokes Equations", International Journal for Numerical, Methods in Fluids, Vol. 15, pp. 791-798, (1992).
 
[32] Bert, C.W., and Malik, M., "Free Vibration Analysis of Thin Cylindrical Shells by the Differential Quadrature Method", ASME Journal Pressure Vessel Tech, Vol. 118, pp. 1-12, (1996).
 
[33] Wang, C.Y., Ru, C.Q., and Mioduchowski A., "Applicability and Limitations of Simplified Elastic Shell Equations for Carbon Nanotubes", Journal of Apply Mechanic, Vol. 71, pp. 622–631, (2004).
 
[34] Fazelzadeh, S.A., and Ghavanloo, E., "Nonlocal Anisotropic Elastic Shell Model for Vibrations of Single-walled Carbon Nanotubes with Arbitrary Chirality", Composite Structures, Vol. 94, pp. 1016-1022, (2012).
 
[35] Yakobson, B.I., Brabec, C.J., and Bernholc, J., "Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response", Physical Review Letters, Vol. 76, pp. 2511-2514,  (1996).
 
[36] Wang, L.F., Zheng, Q.S., Liu, J.Z., and Jiang, Q., "Size Dependence of the Thin-shell Model for Carbon Nanotubes", Physical Review Letters, Vol. 95, pp. 105501, (2005).
 
[37] Ghorbanpour Arani, A., Mohammadimehr, M., Saidi, A.R., Shogaei, S., and Arefmanesh, A., "Thermal Buckling Analysis of Double-walled Carbon Nanotubes Considering the Small-scale Length Effect", Journal of Mechanical Engineering Science Part C, Vol. 225, pp. 248-256,(2010).