تاثیر شیشه‌های هوشمند بر بهره خورشیدی و بار سرمایش در یک ساختمان اداری در اقلیم گرم و مرطوب بوشهر

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشکده هنر و معماری، دانشگاه شیراز

2 دانشکده هنر و معماری، دانشگاه شیراز، شیراز ، ایران

چکیده

مقاله حاضر پس از معرفی انواع شیشه‌های هوشمند الکتروکرومیک، کریستال مایع، گازکرومیک، ترموکرومیک و SPD، به مقایسه نحوه عملکرد و ویژگیهای آنها با یکدیگر پرداخته است. همچنین میزان تاثیر این شیشه ها بر بهره خورشیدی و بار سرمایش یک ساختمان اداری در شهر بوشهر با اقلیم گرم و مرطوب مورد بررسی قرار گرفته است. جهت شبیه سازی از نرم افزار دیزاین بیلدر استفاده شد. استفاده از شیشه ها‌ی SPD ، گازوکرومیک، الکتروکرومیک و ترموکرومیک به ترتیب سبب کاهش 3/48%، 8/45%، 1/34% و 23/17% در بار سرمایش ساختمان در مقایسه با شیشه ساده می‌شود.

کلیدواژه‌ها

موضوعات


[1]  Pérez-Lombard, L., Ortiz, J., and Pout, C., “A Review on Buildings Energy Consumption Information”, Energy Build., Vol. 40, No. 3, pp. 394–398, (2008).
 
[2]  Glabchi, M., "Nano Technology in Architecture and Building Engineering", Tehran University, (2011).
 
[3]  Addington, D.M., and Schodek, D.L., "Smart Materials and New Technologies: for the Architecture and Design Professions", Routledge, London, England, (2005).
 
[4]  Tavares, P., Bernardo, H., Gaspar, A., and Martins, A., “Control Criteria of Electrochromic Glasses for Energy Savings in Mediterranean Buildings Refurbishment”, Sol. Energy, Vol. 134, pp. 236–250, (2016).
 
 [5] Gugliermetti, F., and Bisegna, F., “Visual and Energy Management of Electrochromic Windows in Mediterranean Climate”, Build. Environ, Vol. 38, pp. 479–492, (2003).
 
[6]  Nilsson, A.M., and Roos, A., “Evaluation of Optical and Thermal Properties of Coatings for Energy Efficient Windows”, Thin Solid Films, Vol. 517, No. 10, pp. 3173–3177, (2009).
 
[7]  Purushothaman, K.K., Antony, S.J., and Muralidharan, G., “Optical, Structural and Electrochromic Properties of Nickel Oxide Films Produced by Sol–gel Technique”, Sol. Energy, Vol. 85, No. 5, pp. 978–984, (2011).
 
[8]  Piccolo, A., Pennisi, A., and Simone, F., “Daylighting Performance of an Electrochromic Window in a Small Scale Test-cell”, Sol. Energy, Vol. 83, No. 6, pp. 832–844, (2009).
 
[9]  Deforest, N., Shehabi, A., Selkowitz, S., and Milliron, D.J., “A Comparative Energy Analysis of Three Electrochromic Glazing Technologies in Commercial and Residential Buildings”, Appl. Energy, Vol. 192, pp. 95–109, (2017).
 
[10] DeForest, N., Shehabi, A., O’Donnell, J., Garcia, G., Greenblatt, J., Lee, E.S., Selkowitz, S., and Milliron, D.J., “United States Energy and CO2 Savings Potential from Deployment of Near-infrared Electrochromic Window Glazings”, Build. Environ., Vol. 89, pp. 107–117, Jul (2015).
 
[11] Zinzi, M., “Office Worker Preferences of Electrochromic Windows: A Pilot Study”, Build. Environ., Vol. 41, pp. 1262–1273, (2006).
 
[12] Piccolo, A., and Simone, F., “Effect of Switchable Glazing on Discomfort Glare from Windows”, Build. Environ., Vol. 44, No. 6, pp. 1171–1180, (2009).
 
[13] Lee, E.S., Pang, X., Hoffmann, S., Goudey, H., and Thanachareonkit, A., “An Empirical Study of a Full-scale Polymer Thermochromic Window and its Implications on Material Science Development Objectives”, Sol. Energy Mater. Sol. Cells, Vol. 116, pp. 14–26, (2013).
 
[14] Hoffmann, S., Lee, E.S., and Clavero, C., “Examination of the Technical Potential of Near-infrared Switching Thermochromic Windows for Commercial Building Applications”, Sol. Energy Mater. Sol. Cells, Vol. 123, pp. 65–80, (2014).
 
[15] Lu, Y., Xiao, X., Zhan, Y., Cao, Z., Cheng, H., and Huan, C., “Functional Transparent Nanocomposite Film with Thermochromic and Hydrophobic Properties Fabricated by Electrospinning and Hot-pressing approach,” Ceram. Int., Vol. 44, No. 1, pp. 1013–1018, (2018).
 
[16] Chang, T., Cao, X., Dedon, L.R., Long, S., Huang, A., Shao, Z., Li, N., Luo, H., and Jin, P., “Optical Design and Stability Study for Ultrahigh-performance and Long-lived Vanadium Dioxide-based Thermochromic Coatings”, Nano Energy, Vol. 44, pp. 256–264, Feb. (2018).
 
[17] Sharma, M., Whaley, M., Chamberlain, J., Oswald, T., Schroden, R., Graham, A., Barger, M., and Richey, B., “Evaluation of Thermochromic Elastomeric Roof Coatings for Low-slope Roofs”, Energy Build., Vol. 155, pp. 459–466, (2017).
 
[18] Costanzo, V., Evola, G., and Marletta, L., “Thermal and Visual Performance of Real and Theoretical Thermochromic Glazing Solutions for Office Buildings”, Sol. Energy Mater. Sol. Cells, Vol. 149, pp. 110–120, (2016).
 
[19] Ghosh, A., Norton, B., and Mallick, T.K., “Daylight Characteristics of a Polymer Dispersed Liquid Crystal Switchable Glazing”, Sol. Energy Mater.Sol. Cells, Vol. 174, pp. 572–576, (2018).
 
[20] Feng, W., Zou, L., Gao, G., Wu, G., Shen, J., and Li, W., “Gasochromic Smart Windows: Optical and Thermal Properties, Energy Simulation and Feasibility Analysis”, Sol. Energy Mater. Sol. Cells, Vol. 144, pp. 316–323, (2016).
 
[21] Wittwer, V., Datz, M., Ell, J., Georg, A., Graf, W., and Walze, G., “Gasochromic Windows”, Sol. Energy Mater. Sol. Cells, Vol. 84, pp. 305–314, (2004).
 
[22] Ghosh, A., Norton, B., and Duffy, A., “Measured Overall Heat Transfer Coefficient of a Suspended Particle Device Switchable Glazing”, Appl. Energy, Vol. 159, pp. 362–369, (2015).
 
[23] Ghosh, A., Norton, B., and Duffy, A., “Behaviour of a SPD Switchable Glazing in an Outdoor Test Cell with Heat Removal under Varying Weather Conditions”, Appl. Energy, Vol. 180, pp. 695–706, (2016).
 
[24] Ghosh, A., Norton, B., and Duffy, A., “Effect of Atmospheric Transmittance on Performance of Adaptive SPD-vacuum Switchable Glazing”, Sol. Energy Mater. Sol. Cells, Vol. 161, pp. 424–431, (2017).
 
[25] Barrios, D., Vergaz, R., Sánchez-pena, J.M., García-cámara, B., Granqvist, C.G., and Niklasson, G.A., “Simulation of the Thickness Dependence of the Optical Properties of Suspended Particle Devices”, Sol. Energy Mater. Sol. Cells, Vol. 143, pp. 613–622, (2015).
 
[26] Barrios, D., Vergaz, R., Sanchez-pena, J.M., Granqvist, C.G., and Niklasson, G.A., “Toward a Quantitative Model for Suspended Particle Devices: Optical Scattering and Absorption Coefficients”, Sol. Energy Mater. Sol. Cells, Vol. 111, pp. 115–122, (2013).
 
[27] Iraqi, H., “Investigation of Properties of Thermochemical Coating of Vanadium Dioxide for Smart Glass”, Journal Word of Color, Vol. 4, (2013).
 
[28] Agnihotry, S.A., Singh, P., Joshi, A.G., Singh, D.P., Sood, K.N., and Shivaprasad, S.M., “Electrodeposited Prussian Blue Films: Annealing Effect”, Electrochim. Acta, Vol. 51, No. 20, pp. 4291–4301, (2006).
 
[29] Avendano, A., Azens, A., Niklasson, G.A., and Granqvist, C.G., “Sputter Deposited Electrochromic Films and Devices Based on These: Progress on Nickel-oxide-based Films”, Mater. Sci. Eng. B, Vol. 138, No. 2, pp. 112–117, (2007).
 
[30]“Smart Glass Windows,” [Online]. Available: http://www.glassapps.com/ products/ smart-glass-windows/. [Accessed: 05-Mar-2017], (2017).
 
[31] Makhlouf, A.S.H., and Tiginyanu, I., "Nanocoatings and Ultra-thin Films: Technologies and Applications", Elsevier, (2011).
 
[32] Kutz, M., "Handbook of Materials Selection", Wiley Online Library, (2002).
 
[33] Evins, R., “A Review of Computational Optimisation Methods Applied to Sustainable Building Design”, Renew. Sustain. Energy Rev., Vol. 22, pp. 230–245, (2013).
 
[34] Baetens, R., Jelle, B.P.,  and Gustavsen, A., “Properties, Requirements and Possibilities of Smart Windows for Dynamic Daylight and Solar Energy Control in Buildings: A State-of-the-art Review”, Sol. Energy Mater.Sol. Cells, Vol. 94, No. 2, pp. 87–105, (2010).
 
[35] Murakami, K., Nakajima, K., and Kaneko, S., “Initial Growth of SnO2 Thin Film on the Glass Substrate Deposited by the Spray Pyrolysis Technique”, Thin Solid Films, Vol. 515, No. 24, pp. 8632–8636, (2007).
 
[36] Shaeri, J., Yaghoubi, M., Aliabadi, M., and Vakilinazhad, R., “Analysis of using Nano Aerogel Glazing on Solar Heat Gain and Cooling Load in an Office at Hot and Dry, Hot and Humid and Cold Climates of Iran”, J. Solid Fluid Mech., Vol. 7, No. 4, pp. 209–221, (2017).
 
 
[37] “Designbuilder,” [Online]. Available: https://www.designbuilder.co.uk/. [Accessed: 16-Apr-2017], (2017).