Design of intelligent control system for car following according to instant driver behavior

Authors

Abstract

Due to the increasing demand for traveling in public transportation systems and increasing traffic of vehicles, nowadays vehicles are getting to be intelligent to increase safety, reduce the probability of accident and also financial costs. Therefore, today, most vehicles are equipped with multiple safety control and vehicle navigation systems. But one of the main drawbacks of these control systems is that they are operating as on-off. Therefore the vehicle navigated either by driver or the control system. In this paper a car following integrated control (IC) system is presented that will provide vehicle safety along with freedom of action for the driver and will avoid unsafe condition and instability of the vehicle. This system was developed using a fuzzy model predictive control and used to simulate and predict the future behavior of a Driver-Vehicle-Unit (DVU). For experimental evaluation, the IC system was used along with a human driver in a driving simulator. The results showed that the IC system has better performance in keeping the safe distance in comparison with real human driver and also it can provide driver’s relative freedom in driving the vehicle.

Keywords


[1]  Andreasson, X., and Ma, I., “Behavior Measurement, Analysis, and Regime Classification in Car Following”, IEEE Transactions on Intelligent Transportation Systems, Vol. 8, No. 1, pp. 144–155, (2007).
 
[2]  Lieu, H., “A Roadmap for the Research, Development, and Deployment of Traffic Estimation and Prediction Systems for Real–time and Offline Applications (TrEPS, TrEPS–P)”, Federal Highway Administration, USDOT: 35, (2003).
 
[3]  Zhang, H. M., and Kim, T., “A Car-Following Theory for Multiphase Vehicular Traffic Flow”, Transportation Research Part B: Methodological, Vol. 39, No. 5, pp. 385–399, (2005).
 
[4]  Khodayari, A., Ghaffari, A., Kazemi, R., and Braunstingl, R., “A Modified Car-following Model Based on a Neural Network Model of the Human Driver Effects”, IEEE Transactions on Systems, Man and Cybernetics, Part A -Systems and Humans (ISI), Vol. 99, pp. 1440-1449, (2012).
 
[5]  Baskar, L. D., De Schutter, B., and Hellendoorn, H., “Model Based Predictive Traffic Control for Intelligent Vehicles: Dynamic Speed Limits and Dynamic Lane Allocation”, IEEE Intelligent Vehicles Symposium, Eindhoven University of Technology, pp.174-179, (2008).
 
[6]    خدایاری، علیرضا، "طراحی سیستم کنترل هوشمند تعقیب خودرو مبتنی بر تأخیر لحظه­ای رفتار راننده و خودرو"، رساله دکتری، دانشگاه خواجه نصیرالدین طوسی، دانشکده مهندسی مکانیک، تابستان (1391).
 
[7]  Maciejowski, J. M., “Predictive Control with Constraints”, Prentice Hall, Harlow, England, (2002).
 
[8]   Camacho, E.F., and Bordons, C., “Model Predictive Control”, Springer, London, (2004).
 
[9]  Ma, X., and Andreasson, I., “Driver Reaction Time Estimation from Real Car Following Data and Application in GM-Type Model Evaluation”, The 85th Transportation Research Board Annual Meeting, Washington D.C., (2006).
 
[10]  Khodayari, A., Ghaffari, A., Kazemi, R., and Manavizadeh, N., “ANFIS Based Modeling and Prediction Car Following Behavior in Real Traffic Flow Based on Instantaneous Reaction Delay”, 13th International IEEE Conference on Intelligent Transportation Systems, Portugal, pp. 599-604, (2010).
 
[11]  Khodayari, A., Ghaffari, A., Kazemi, R., and Braunstingl, R., “Modify Car Following Model by Human Effects Based on Locally Linear Neuro Fuzzy”, 2011 IEEE Intelligent Vehicles Symposium (IV 2011), Germany, Baden-Baden, pp. 661-666, (2011).
 
[12]            خدایاری، علیرضا.، غفاری، علی.، کاظمی، رضا.، "طراحی یک سیستم فازی عصبی تطبیقی مبتنی بر ایده تأخیر لحظه­ای راننده و خودرو برای تخمین و پیش­بینی فرآیند تعقیب خودرو در جریان ترافیک"، هجدهمین کنفرانس مهندسی برق ایران، دانشگاه صنعتی اصفهان، (1389).
 
[13]  Petrov, M., Ahmed, S., Ichtev, A., and Taneva, A., “Fuzzy–Neural Model Predictive Control of Multivariable Processes”, Advanced Model Predictive Control, Publisher: in Tech, www.intechopen.com, (2011).
 
[14]  Pipes, L. A., “An Operational Analysis of Traffic Dynamics”, Journal of Applied Physics, Vol. 24, No. 3, pp. 274-281, (1953).
 
[15]  Ghaffari, A., Khodayari, A., Nouri, M., Salehinia, S., and Alimardani, F., “Model Predictive Control System Design for Car-following Behavior in Real Traffic Flow”, IEEE International Conference on Vehicular Electronics and Safety, Turkey, Istanbul, pp.87-92, (2012).
 
[16]  US Department of Transportation, “NGSIM – Next Generation Simulation,” http://www.ngsim.fhwa.dot.gov, (2009).
 
[17]  Federal Highway Administration website, Lankershim Boulevard Dataset: http://www.fhwa.dot.gov/publications/research/operations/07029/index.cfm, (2009).
 
[18]  Thiemann, C., Treiber, M., and Kesting, A., “Estimating Acceleration and Lane-changing Dynamics Based on NGSIM Trajectory Data”, Transportation Research Record: Journal of the Transportation Research Board, Vol. 2088, pp. 90-101, (2008).
 
[19]  Ghaffari, A., Khodayari, A., Alimardani, F., and Sadati, H., “ANFIS Based Modeling for Overtaking Maneuver Trajectory in Motorcycles and Autos”, IEEE International Conference on Control System, Computing and Engineering (ICCSCE 2011), Malaysia, Penang, pp. 68–73, (2011).
[20]  Palumbo, G., and  Pennisi, S., “Feedback Amplifiers-Theory and Design”, Springer, New York, (2003).
 
[21]           Ogata, K., “Modern Control Engineering”, Prentice Hall, USA, (2010).