Estimation of Vehicle Longitudinal Dynamic Parameters through Hardware in the Loop Simulation

Abstract

Appropriate control of the vehicle longitudinal dynamic requires accurate and real-time knowledge of the parameters affecting the dynamics of the vehicle. The main contribution of this paper is in developing an estimator called short-time linear quadratic form (STLQF) which is a new parameter estimation technique to simultaneously estimate the time-varying parameters that affect on vehicle longitudinal dynamics with a low latency. These parameters are the vehicle mass, time varying road slope angle and overall aerodynamic drag coefficient of the vehicle in real time. Next, the efficiency of STLQF algorithm is shown by comparing the results of STLQF technique in an experimental test against the recursive least squares (RLS) parameter estimation method. The results of implementing STLQF parameter estimation algorithm, showes the better performance of STLQF estimator compared with RLS algorithm. In the end, the STLQF estimator is simulated in hardware in the loop configuration using an AVR microcontroller in order to rapid prototype of the STLQF method by minimum cost and high accuracy in the least possible time.

Keywords

Main Subjects


[1] McIntyre, M. L., Ghotikar, T. J., Vahidi, A., Song, X., and Dawson, D. M., “A Two-stage Lyapunov-based Estimator for Estimation of Vehicle Mass and Road Grade”, IEEE Trans. Veh. Technol., Vol. 58, No. 7, pp. 3177–3185, (2009).
 
[2] Rozyn, M., and Zhang, N., “A Method for Estimation of Vehicle Inertial Parameters”, Veh. Syst. Dyn., Vol. 48, No. 5, pp. 547–565, (2010).
 [3] Druzhinina, M., Stefanopoulou, A., and Moklegaard, L., “Adaptive Continuously Variable Compression Braking Control for Heavy-duty Vehicles”, J. Dyn. Syst. Meas. Control, Vol. 124, pp. 406–414, (2002).
 
[4] Hsu, L. Y., and Chen, T. L., “Vehicle Dynamic Prediction Systems with Online Identification of Vehicle Parameters and Road Conditions”, J. Sensors, Vol. 12, No. 11, pp. 15778–15800, (2012).
 
[5] Polanco, A. P., and Munoz, L., “Influence of Inertial Properties on the Comfort of Road Vehicles”, SAE Tech. Pap. 2011-01-0436, (2011).
 
[6] Tan, Y., Robotis, A., and Kanellakopoulos, I., “Speed Control Experiments with an Automated Heavy Vehicle”, Proc. 1999 IEEE Int. Conf. Control Appl., Vol. 2, pp. 1353–1358, Kohala Coast, USA, (1999).
 
[7] Chen, Y., and Wang, J., “Adaptive Vehicle Speed Control with Input Injections for Longitudinal Motion Independent Road Frictional Condition Estimation”, IEEE Trans. Veh. Technol., Vol. 60, No. 3, pp. 839–848, (2011).
 
[8] Huang, X., and Wang, J., “Adaptive Vehicle Planar Motion Control with Fast Parameter Estimation”, Proc. IEEE Conf. Decis. Control, pp. 5034–5039, Maui, USA, (2012).
 
[9] Ohnishi, H., Ishii, J., Kayano, M., and Katayama, H., “Study on Road Slope Estimation for Automatic Transmission Control”, JSAE Rev., Vol. 21, pp. 235–240, (2000).
 
[10] Bae, H. S., Ryu, J., and Gerdes, J. C., “Road Grade and Vehicle Parameter Estimation for Logitudinal Control using GPS”, 2001 IEEE Intell. Transp. Syst. Proc., pp. 166–171, (2001).
 
[11] Zhang, K., and Frey, H. C., “Road Grade Estimation for On-road Vehicle Emissions Modeling using Light Detection and Ranging Data”, J. Air Waste Manage. Assoc., Vol. 56, No. 6, pp. 777–788, (2006).
 
[12] Ren, Z., and Wang, H., “Road Slope Estimation Algorithm and Safety Analysis of Mountainous Road”, J. Inf. Comput. Sci., Vol. 11, No. 7, pp. 2253–2265, (2014).
 
[13] Fathy, H. K., Kang, D. K. D., and Stein, J. L., “Online Vehicle Mass Estimation using Recursive Least Squares and Supervisory Data Extraction”, 2008 Am. Control Conf., pp. 1842–1848, Seattle, USA, (2008).
 
[14] Vahidi, A., Stefanopoulou, A., and Peng, H., “Recursive Least Squares with Forgetting for Online Estimation of Vehicle Mass and Road Grade: Theory and Experiments”, Veh. Syst. Dyn., Vol. 43, No. 1, pp. 31–55, (2005).
 
[15] Vahidi, A., Druzhinina, M., Stefanopoulou, A., and Peng, H. P. H., “Simultaneous Mass and Time-varying Grade Estimation for Heavy-duty Vehicles”, Proc. 2003 Am. Control Conf., Vol. 6, pp. 4951–4956, Denver, USA, (2003).
 
[16] Ramprabu, J., and Sindhuja, G., “Vehicle Stability Maintenance through Online Estimation of Parameter Uncertainties”, Int. J. Emerg. Trends Technol. Comput. Sci., Vol. 3, No. 5, pp. 132–136, (2014).
 
[17] Kedar-Dongarkar, G., and Das, M., “Vehicle Parameter Estimation using Nested RLS Algorithm”, Midwest Symp. Circuits Syst., pp. 404–407, Columbus, USA, (2013).
 
[18] Zarringhalam, R., Rezaeian, A., Melek, W., Khajepour, A., and Chen, S., “A Comparative Study on Identification of Vehicle Inertial Parameters”, Proc. 2012 Am. Control Conf., pp. 3599–3604, Montreal, Canada, (2012).
 
[19] Hong, S., Lee, C., Borrelli, F., and Hedrick, J. K., “A Novel Approach for Vehicle Inertial Parameter Identification using a Dual Kalman Filter”, IEEE Trans. Intell. Transp. Syst., Vol. 16, No. 1, pp. 151–161, (2014).
 
[20] Nada, E., Ahmed, A., and Abd-alla, M., “Modified Dual Unscented Kalman Filter Approach for Measuring Vehicle States and Vehicle Parameters”, Int. J. Eng. Res. Technol., Vol. 3, No. 8, pp. 1423–1430, (2014).
 
[21] Winstead, V., and Kolmanovsky, I. V., “Estimation of Road Grade and Vehicle Mass via Model Predictive Control”, Proc. 2005 IEEE Conf. Control Appl., pp. 1588–1593, (2005).
 
[22] Homaeinezhad, M. R., Tahbaz-zadeh Moghaddam, I., Khakpour, Z., and Naseri, H., “Short-time Linear Quadratic Form Technique for Estimating Fast-varying Parameters in Feedback Loops”, Asian J. Control, Vol. 18, No. 4, pp. 1–14, (2015).
 
[23] Marzbanrad, J., and Tahbaz-zadeh Moghaddam, I., “Self-tuning Control Algorithm Design for Vehicle Adaptive Cruise Control System through Real-time Estimation of Vehicle Parameters and Road Grade”, Veh. Syst. Dyn., Vol. 54, No. 9, pp. 1291–1316, (2016).
 
[24] Liang, H., Chong, K. T., No, T. S., and Yi, S. Y., “Vehicle Longitudinal Brake Control using Variable Parameter Sliding Control”, Control Eng. Pract., Vol. 11, pp. 403–411, (2003).
 
[25] Ljung, L., “System Identification: Theory for the User”, Prentice Hall, (1999).
 
[26] Marzbanrad, J., and Tahbaz-zadeh Moghaddam, I., “Prediction of Driver’s Accelerating Behavior in the Stop and Go Maneuvers using Genetic Algorithm-Artificial Neural Network Hybrid Intelligence”, Int. J. Automot. Eng., Vol. 5, No. 2, pp. 986–998, (2015).
Volume 20, Issue 1 - Serial Number 50
System Dynamics and Solid Mechanics
June 2018
Pages 45-76
  • Receive Date: 27 September 2016
  • Revise Date: 28 December 2016
  • Accept Date: 01 July 2018