شبیه‌سازی عددی و مطالعه پارامتری شریان اتساع‌پذیر آئورت

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشگاه صنعتی شیراز*مهندسی مکانیک

2 دانشگاه صنعتی شیراز

چکیده

در این تحقیق با در نظر گرفتن یک مدل واقعی به شبیه‌سازی عددی قوس آئورت با استفاده از نرم‌افزار ANSYS-CFX پرداخته شده است. نتایج نشان می‌دهد استفاده از مدل سه لایه منجر به ایجاد پرش در تنش در مرز لایه‌ها شده و نسبت به مدل یک لایه، ماکزیمم تنش‌ها مقادیر بالاتری خواهند داشت. برای شبیه سازی رفتار واقعی شریان از مدل هایپر الاستیک استفاده شده که در مقایسه با مدل الاستیک، منجر به ایجاد تنش‌های پایین‌تری در دیواره شریان شده است. با بررسی تأثیر پارامترهای مختلف بر روی توزیع تنش در جداره، نواحی آسیب‌پذیر مشخص گردیده است.

کلیدواژه‌ها

موضوعات


[1] Khanafer, K., and Berguer, R., “Fluid–structure Interaction Analysis of Turbulent Pulsatile Flow within a Layered Aortic Wall as Related to Aortic Dissection”, Journal of Biomechanics, Vol. 42, No. 16, pp. 2642-2648, (2009).
 
[2] Shaik, E., “Numerical Simulations of Blood Flow in Arteries using Fluid-structure Interactions”, PhD Thesis, Department of Aerospace Engineering, Wichita State University, United States, (2007).
 
[3] Li, M., Beech-Brandt, J., John, L., Hoskins, P., and Easson, W., “Numerical Analysis of Pulsatile Blood Flow and Vessel Wall Mechanics in Different Degrees of Stenoses”, Journal of Biomechanics, Vol. 40, No. 16, pp. 3715-3724, (2007).
 
[4] Toloui, M., Firoozabadi, B., and Saidi, M., “A Numerical Study of the Effects  of Blood Rheology and Vessel Deformability on the Hemodynamics of Carotid Bifurcation”, Scientia Iranica, Vol. 19, No. 1, pp. 119-126, (2012).
 
[5] Vasava, P., Jalali, P., Dabagh, M., and Kolari, P. J., “Finite Element Modelling of Pulsatile Blood Flow in Idealized Model of Human Aortic Arch: Study of Hypotension and Hypertension”, Computational and Mathematical Methods in Medicine, Vol. 2012, No. 1, pp. 1-14, (2012).
 
[6] Crosetto, P., Reymond, P., Deparis, S., Kontaxakis, D., Stergiopulos, N., and Quarteroni, A., “Fluid–structure Interaction Simulation of Aortic Blood Flow”, Computers & Fluids, Vol. 43, No. 1, pp. 46-57, (2011).
 
[7] Valencia, A., and Baeza, F., “Numerical Simulation of Fluid–structure Interaction in Stenotic Arteries Considering Two Layer Nonlinear Anisotropic Structural Model”, International Communications in Heat and Mass Transfer, Vol. 36, No. 2, pp. 137-142, (2009).
 
[8] De Hart, J., Peters, G., Schreurs, P., and Baaijens, F., “A Three-dimensional Computational Analysis of Fluid–structure Interaction in the Aortic Valve”, Journal of Biomechanics, Vol. 36, No. 1, pp. 103-112, (2003).
 
[9] Ranga, A., Mongrain, R., Biadilah, Y., and Cartier, R., “A Compliant Dynamic FEA Model of the Aortic Valve, in Proceedings of International Federation for the Promotion of Mechanism and Machine Science”, The 12th World Congress in Mechanism and Machine Science, Besançon, France, (2007).
 
[10] Chan, W., Ding, Y., and Tu, J., “Modeling of Non-Newtonian Blood Flow Through a Stenosed Artery Incorporating Fluid-structure Interaction”, Australian and New Zealand Industrial and Applied Mathematics Journal, Vol. 47, pp. C507-C523, (2007).
 
[11] Lee, K., and Xu, X., “Modelling of Flow and Wall Behaviour in a Mildly Stenosed Tube”,  Medical Engineering & Physics, Vol. 24, No. 9, pp. 575-586, (2002).
 
 [12] Chan, W.Y., and Eng, B., “Simulation of Arterial Stenosis Incorporating Fluid-structural Interaction and Non-Newtonian Blood Flow”, M.Sc. Thesis, School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Australia, (2006).
 
[13] Gao, F., Watanabe, M., and Matsuzawa, T., “Stress Analysis in a Layered Aortic Arch Model under Pulsatile Blood Flow”, BioMedical Engineering Online Journal, Vol. 5, No. 25, pp. 1-11, (2006).
 
[14] Zhao, S., Xu, X., Hughes, A., Thom, S., Stanton, A., Ariff, B., and Long, Q., “Blood Flow and Vessel Mechanics in a Physiologically Realistic Model of a Human Carotid Arterial Bifurcation”, Journal of Biomechanics, Vol. 33, No. 8, pp. 975-984, (2000).
 
[15] Yahya, M., “Three Dimensional Finite-element Modeling of Blood Flow in Elastic Vessels: Effects of Arterial Geometry and Elasticity on Aneurysm Growth and Rupture”, M.Sc. Thesis, Biomedical Physics, Ryerson University, Toronto, Canada,  (2010).
 
[16] Chakravarty, S., Mandal, P., and Mandal, A., “Mathematical Model of Pulsatile Blood Flow in A Distensible Aortic Bifurcation Subject to Body Acceleration”, International Journal of Engineering Science, Vol. 38, No. 2, pp. 215-238, (2000).
 
[17] Gao, F., Guo, Z., Sakamoto, M., and Matsuzawa, T., “Fluid-structure Interaction within a Layered Aortic Arch Model”, Journal of Biological Physics, Vol. 32, No. 5, pp. 435-454, (2006).
 
[18] Alishahi, M., and Emdad, H., “Numerical Simulation of Blood Flow in a Flexible Stenosed Abdominal Real Aorta”, Scientia Iranica, Vol. 18, No. 6, pp. 1297-1305, (2011).
 
[19] Khanafer, K.M., Bull, J.L., and Berguer, R., “Fluid–structure Interaction of Turbulent Pulsatile Flow within a Flexible Wall Axisymmetric Aortic Aneurysm Model”, European Journal of Mechanics-B/Fluids, Vol. 28, No. 1, pp. 88-102, (2009).
 
[20] Wang, X., and Li, X., “Fluid-structure Interaction Based Study on the Physiological Factors Affecting the Behaviors of Stented and Non-Stented Thoracic Aortic Aneurysms”, Journal of Biomechanics, Vol. 44, No. 12, pp. 2177-2184, (2011).
 
[21] Wang, X., and Li, X., “Biomechanical Behaviors of Curved Artery with Flexible Wall: A Numerical Study using Fluid–structure Interaction Method”, Computers in Biology and Medicine, Vol. 41, No. 11, pp. 1014-1021, (2011).
 
[22] Chung, S., and Vafai, K., “Effect of the Fluid–structure Interactions on Low-density Lipoprotein Transport within a Multi-layered Arterial Wall”, Journal of Biomechanics, Vol. 45, No. 2, pp. 371-381, (2012).
 
[23] Khamdaengyodtai, P., Vafai, K., Sakulchangsatjatai, P., and Terdtoon, P., “Effects of Pressure on Arterial Failure”,  Journal of Biomechanics, Vol. 45, No. 15, pp. 2577-2588, (2012).
 
[24] Konala, B.C., Das, A., and Banerjee, R.K., “Influence of Arterial Wall-Stenosis Compliance on the Coronary Diagnostic Parameters”, Journal of Biomechanics, Vol. 44, No. 5, pp. 842-847, (2011).
 
[25] Jakel, R., “Analysis of Hyperelastic Material with Mechanica-theory and Application Examples”, in 2nd SAXSIM, Technische Universität Chemnitz, Germany, April (2010).