کاربرد روش شبکه بولتزمن در شبیه‌سازی انتقال حرارت جابجایی طبیعی نانوسیال درون یک محفظه متوازی‌الاضلاع شکل در حضور میدان مغناطیسی

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشگاه کاشان*مکانیک

2 دانشکده مکانیک، دانشگاه کاشان

چکیده

چکیده
در کار حاضر، برای اولین بار، جابجایی طبیعی نانوسیال درون محفظه متوازی‌الاضلاع شکل با دو مانع مثلثی با شرایط مرزی دمایی متفاوت در حضور میدان مغناطیسی با روش شبکه بولتزمن شبیه‌سازی شده است. در شبیه‌سازی صورت گرفته میدان سرعت و دما با حل همزمان معادلات روش شبکه بولتزمن برای توابع توزیع سرعت و دما محاسبه شده است. تأثیر عوامل مختلفی چون عدد رایلی (۱۰۳-۱۰۵)، عدد هارتمن (۰-۹۰)، کسر حجمی نانوذرات (۰۵/۰-۰) و شرایط مرزی دمایی متفاوت موانع مثلثی بر روی جابجایی طبیعی بررسی شده است. نتایج نشان می‌دهد افزایش عدد رایلی منجر به افزایش میزان انتقال حرارت می شود.

کلیدواژه‌ها


[1] Li, Z., Yang, M., and Zhang, Y., "Lattice Boltzmann Method Simulation of 3-D Natural Convection with Double MRT Model", International Journal of Heat and Mass Transfer, Vol. 94, pp. 222-238, (2016).
 
[2] Himika, T.A., Hasan, M.F., and Molla, M.M., "Lattice Boltzmann Simulation of Airflow and Mixed Convection in a General Ward of Hospital", Journal of Computational Engineering, Vol. 2016, pp. 1-15, (2016).
 
[3] Yang, M., Ding, Z., Lou, Q., Wang, Z., and Zhang, Y., "Lattice Boltzmann Method Simulation of Natural Convection Heat Transfer in Horizontal Annulus", Journal of Thermophysics and Heat Transfer, Vol. 31, No. 3, pp. 1-12, (2017).
 
[4] Kahwaji, G., and Ali, O.M., "Numerical Investigation of Natural Convection Heat Transfer from Square Cylinder in an Enclosed Enclosure Filled with Nanofluids", International Journal of Recent Advances in Mechanical Engineering (IJMECH), Vol. 4, No. 4, pp. 1-17, (2015).
 
[5] Sheikholeslami, M., Gorji-Bandpy, M., and Ganji, D., "Lattice Boltzmann Method for MHD Natural Convection Heat Transfer using Nanofluid", Powder Technology, Vol. 254, pp. 82-93, (2014).
 
[6] Hussein, A.K., Ashorynejad, H., Sivasankaran, S., Kolsi, L., Shikholeslami, M., and Adegun, I., "Modeling of MHD Natural Convection in a Square Enclosure Having an Adiabatic Square Shaped Body using Lattice Boltzmann Method", Alexandria Engineering Journal, Vol. 55, pp. 203-214, (2016).
 
[7] Varol, Y., Oztop, H.F., and Yilmaz, T., "Two-dimensional Natural Convection in a Porous Triangular Enclosure with a Square Body", International Communications in Heat and Mass Transfer, Vol. 34, pp. 238-247, (2007).
 
 [8] Natarajan, E., Basak, T., and Roy, S., "Natural Convection Flows in a Trapezoidal Enclosure with Uniform and Non-uniform Heating of Bottom Wall", International Journal of Heat and Mass Transfer, Vol. 51, pp. 747-756, (2008).
 
[9] Salih, E.A., and Mustafa, A.W., "Natural Convection in a Parallelogrammic Enclosure Partially Heated from Below", ZANCO Journal of Pure and Applied Sciences, Vol. 26, pp. 43-60, (2014).
 
[10] Hasib, M.H., Hossen, M.S., and Saha, S., "Effect of Tilt Angle on Pure Mixed Convection Flow in Trapezoidal Cavities Filled with Water-Al2O3 Nanofluid", Procedia Engineering, Vol. 105, pp. 388-397, (2015).
 
[11] Mejri, I., Mahmoudi, A., Abbassi, M.A., and Omri, A., "LBM Simulation of Natural Convection in an Inclined Triangular Cavity Filled with Water", Alexandria Engineering Journal, Vol. 55, pp. 1385-1394, (2016).
 
[12] Sheikholeslami, M., Gorji-Bandpy, M., and Ganji, D., "Lattice Boltzmann Method for MHD Natural Convection Heat Transfer using Nanofluid", Powder Technology, Vol. 254, pp. 82-93, (2014).
 
[13] Mliki, B., Abbassi, M.A., Guedri, K., and Omri, A., "Lattice Boltzmann Simulation of Natural Convection in an L-Shaped Enclosure in the Presence of Nanofluid", Engineering Science and Technology, an International Journal, Vol. 18, pp. 503-511, (2015).
 [14] Jafari, M., Farhadi, M., Akbarzade, S., and Ebrahimi, M., "Lattice Boltzmann Simulation of Natural Convection Heat Transfer of SWCNT-Nanofluid in an Open Enclosure", Ain Shams Engineering Journal, Vol. 6, pp. 913-927, (2015).
 
[15] Chamkha, A.J., and Ismael, M.A., "Magnetic Field Effect on Mixed Convection in Lid-driven Trapezoidal Cavities Filled with a Cu–water Nanofluid with an Aiding or Opposing Side Wall", Journal of Thermal Science and Engineering Applications, Vol. 8, pp. 310-319, (2016).
 
[16] Ghasemi, B., and Aminossadati, S., "Mixed Convection in a Lid-driven Triangular Enclosure Filled with Nanofluids", International Communications in Heat and Mass Transfer, Vol. 37, pp. 1142-1148, (2010).
 
[17] Mahmoodi, M., and Hashemi, S.M., "Numerical Study of Natural Convection of a Nanofluid in C-shaped Enclosures", International Journal of Thermal Sciences, Vol. 55, pp. 76-89, (2012).
 
[18] Dehnavi, R., and Rezvani, A., "Numerical Investigation of Natural Convection Heat Transfer of Nanofluids in a Γ Shaped Cavity", Superlattices and Microstructures, Vol. 52, pp. 312-325, (2012).
 
[19] Teamah, M.A., and El-Maghlany, W.M., "Augmentation of Natural Convective Heat Transfer in Square Cavity by Utilizing Nanofluids in the Presence of Magnetic Field and Uniform Heat Generation/Absorption", International Journal of Thermal Sciences, Vol. 58, pp. 130-142, (2012).
 
 [20] Mahmoudi, A., Mejri, I., Abbassi, M.A., and Omri, A., "Lattice Boltzmann Simulation of MHD Natural Convection in a Nanofluid-filled Cavity with Linear Temperature Distribution", Powder Technology, Vol. 256, pp. 257-271, (2014).
 
[21] Malleswaran, A., and Sivasankaran, S., "A Numerical Simulation on MHD Mixed Convection in a Lid-driven Cavity with Corner Heaters”, Journal of Applied Fluid Mechanics, Vol. 9, pp. 311-319, (2016).
 
[22] Choi, S.U.S., "Enhancing Thermal Conductivity of Fluids with Nanoparticles", ASME Fluids Engineering Division, Vol. 231, pp. 99-106, (1995).
 
[23] Nemati, H., Farhadi, M., Sedighi, K., Fattahi, E., and Darzi, A., "Lattice Boltzmann Simulation of Nanofluid in Lid-driven Cavity", International Communications in Heat and Mass Transfer, Vol. 37, pp. 1528-1534, (2010).
 
[24] Wolf-Gladrow, D.A., "Lattice-Gas Cellular Automata and Lattice Boltzmann Models: an Introduction", Springer-Verlag, Berlin Heidelberg, (2004).
 
[25] Mohamad, A.A., "Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes", Springer-Verlag, London, (2011).
 
[26] Bhatnagar, P.L., Gross, E.P., and Krook, M., "A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems", Physical Review, Vol. 94, pp. 511-525, (1954).
[27] Kefayati, G.R., Gorji-Bandpy, M., Sajjadi, H., and Ganji, D., "Lattice Boltzmann Simulation of MHD Mixed Convection in a Lid-driven Square Cavity with Linearly Heated Wall", Scientia Iranica, Vol. 19, pp. 1053-1065, (2012).
 
[28] Khanafer, K., Vafai, K., and Lightstone, M., "Buoyancy-driven Heat Transfer Enhancement in a Two-dimensional Enclosure Utilizing Nanofluids", International Journal of Heat and Mass Transfer, Vol. 46, pp. 3639-3653, (2003).
 
[29] Patel, H.E., Sundararajan, T., Pradeep, T., Dasgupta, A., Dasgupta, N., and Das, S.K., "A Micro-convection Model for Thermal Conductivity of Nanofluids", Pramana-Journal of Physics, Vol. 65, pp. 863-869, (2005).
 
[30] Sathiyamoorthy, M., and Chamkha, A., "Effect of Magnetic Field on Natural Convection Flow in a Liquid Gallium Filled Square Cavity for Linearly Heated Side Wall (s)", International Journal of Thermal Sciences, Vol. 49, pp. 1856-1865, (2010).