simulation and control of omni-directional mobile robot

Authors

1 Applied Mechanics- Mechanical Engineering

2 Applied Mechanics-Mechanical Engineering

Abstract

The main purpose of this article is tracking the trajectory of the omni-directional robot using the navigation algorithm by behavior-based control and a new simulation with the aim of orienting the two robots toward each other, In addition, fixed orientation simulations have been performed using this method. Using the robot kinematics to obtain the equations related to the speed and torque of the wheels. in this paper, the robot platform structure has three sets of orthogonal omni wheels that can move in all directions with the ability of displacement without rotation or rotation and displacement simultaneously. the appropriate dynamic equation of the robot has been extracted, then using inverse dynamics of the robot to control the robot’s path. In addition, validate some simulation by presented method with other references. At the end, the results obtained from the simulations are discussed and analyzed. To ensure this method, verification has been done with other authorities.

Keywords

Main Subjects


[1] Tanner, H.G., Loizou, S.G., and Kyriakopoulos, K.J., "Nonholonomic Navigation and Control of Cooperating Mobile Manipulators", IEEE Transactions on Robotics and Automation, Vol. 19(11), pp. 53-64, (2003).
[2] He, W., Chen, Y., and Yin, Z., "Adaptive Neural Network Control of an Uncertain Robot with Full-state Constraints", IEEE Transactions on Cybernetics", Vol. 46(3), pp. 620-629, (2015).
[3] He, W., Dong, Y., and Sun, C., "Adaptive Neural Impedance Control of a Robotic Manipulator with Input Saturation", IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 46(3), pp. 334-344, (2016).
[4] Cui, R., Zhang, X., and Cui, D., "Adaptive Sliding-mode Attitude Control for Autonomous Underwater Vehicles with Input Nonlinearities", Ocean Engineering. Vol. 123, pp. 45-54, (2016).
[5] فومنی، س.، " تحلیل سینماتیکی-سینتیکی پیمایش مستقیم الخط ربات انسان نما"، نشریه مدل سازی در مهندسی، دوره 3، شماره 17، (1388).
[6] Cui, R., Guo, J., and Mao, Z., "Adaptive Backstepping Control of Wheeled Inverted Pendulums Models", Nonlinear Dynamics, Vol. 79(1), pp. 501-511, (2015).
[7] موسویان، ع. ا.،  حسینی، ش.، " طراحی پایدارترین حرکت ربات متحرک در مسیر مشخص"، نشریه مدل سازی در مهندسی، دوره 11، شماره 33، صفحه 14-1، (1392). 
[8] مرادی، م.، نیکوبین، ا.، آزادی، س.، "طراحی مسیر بهینه و بالانسینگ تکراری برای روبات متحرک در حرکات سریع"، نشریه مدل سازی در مهندسی، دوره 14 شماره 47، صفحه 153-141، (1395). 
[9] Moreno, J., Clotet, E., Lupiañez, R., Tresanchez, M., Martinez, D., Pallejà, T., Casanovas, J., and Palacín, J., "Design, Implementation and Validation of the Three-wheel Holonomic Motion System of the Assistant Personal Robot (APR)", Sensors, Vol. 16(10), pp. 1658, (2016).
[10] Alshorman, A.M., Alshorman, O., Irfan, M., Glowacz, A., Muhammad, and F., Caesarendra, W., "Fuzzy-based Fault-tolerant Control for Omnidirectional Mobile Robot", Machines, Vol. 8(3), pp. 55, (2020).
[11] Hacene, N., and Mendil, B., "Fuzzy Behavior-based Control of Three Wheeled Omnidirectional Mobile Robot", International Journal of Automation and Computing, Vol. 16(2), pp. 163-185, (2019).
[12] Liu, X., Chen, H., Wang, C., Hu, F., and Yang, X., "MPC Control and Path Planning of Omni-directional Mobile Robot with Potential Field Method", In International Conference on Intelligent Robotics and Applications, Lecture Notes in Computer Science, Vol. 10985, Springer, Cham, pp.170-181, (2018).
[13] Armah, S., Yi, S., and Abu-Lebdeh, T., "Implementation of Autonomous Navigation Algorithms on Two-wheeled Ground Mobile Robot", American Journal of Engineering and Applied Sciences, Vol. 7(1), pp. 149-164, (2014).
[14] Wang, C., Liu, X., Yang, X., Hu, F., Jiang, A., and Yang, C.,"Trajectory Tracking of an Omni-directional Wheeled Mobile Robot using a Model Predictive Control Strategy", Applied Sciences, Vol. 8(2), pp. 231, (2018).
[15] Watanabe, K.,"Knowledge-based Intelligent Electronic Systems. Proceedings KES'98, Control of an Omnidirectional Mobile Robot, in 1998 Second International Conference, IEEE, April 21-23, Adelaide, SA, Australia, (1998).
[16] Watanabe, K., Shiraishi, Y., Tzafestas, S.G., Tang, J., and Fukuda, T., "Feedback Control of an Omnidirectional Autonomous Platform for Mobile Service Robots", Journal of Intelligent and Robotic Systems, Vol. 22(3), pp. 315-330, (1998).
[17] Tang, L., Dian, S., Gu, G., Zhou, K., Wang, S., and Feng, X., "A Novel Potential Field Method for Obstacle Avoidance and Path Planning of Mobile Robot", 3rd International Conference on Computer Science and Information Technology, IEEE, July 9-11, Chengdu, China (2010).
[18] Wang, W., Zhu, M., Wang, X., He, S., He, J., and Xu, Z.,"An Improved Artificial Potential Field Method of Trajectory Planning and Obstacle Avoidance for Redundant Manipulators", International Journal of Advanced Robotic Systems, Vol. 15(5), pp. 172988141879962, (2018).
[19] Li, D., Pan, Z., and Deng, H., "Two-dimensional Obstacle Avoidance Control Algorithm for Snake-like Robot in Water Based on Immersed Boundary-lattice Boltzmann Method and Improved Artificial Potential Field Method", Transactions of the Institute of Measurement and Control, Vol. 42(10), pp. 1840-1857, (2020).
[20] Iwatsuki, M., Nakano, K., and Ohuchi, T., "Target Point Tracking Control of Robot Vehicle by Fuzzy Reasoning", Transactions of the Society of Instrument and Control Engineers, Vol. 27(1), pp. 70-76, (1991).
[21] Saito, M., and Tsumura, T., "Collision Avoidance Among Multiple Mobile Robots", Transactions of the Institute of Systems, Control and Information Engineers, Vol. 3(8), pp. 252-260, (1990 ).