Investigating the effects of length, diameter and chirality on the mechanical properties of defective carbon nanotubes

Authors

1 Department of Mechanical Engineering, Faculty of Engineering, Shahrekord University, Shahrekord

2 Professor, Department of Mechanical Engineering, Shahrekord University, Shahrekord

3 Associate Professor, Department of Mechanical Engineering, Shahrekord University, Shahrekord

Abstract

Carbon nanotubes are obtained from rolling a graphene sheet of a given size and at a specific direction. Due to the strong carbon-carbon covalent bonds, nanotubes have unique mechanical and electrical properties. In this paper, using finite element and molecular mechanics methods, the covalent bonds between the carbon atoms in the nanotube have been modeled using linear beam element. Carbon nanotubes with different diameter and length ranges have been analyzed. The effects of nanotube length, diameter and chirality on nanotubes Young's and shear Modului have been investigated, independently. Also, the decrease in nanotube modulus due to the number and position of vacancy defects has been determined. The results show that, nanotube diameter has a larger effect, compared to nanotube length, on elastic properties, especially Young's modulus. Comparing the results obtained for armchair, zigzag, and chiral nanotubes, vacancy defect had the most effect on chiral nanotube Young's modulus, with a chiral angle of 49.15 degrees.

Keywords

Main Subjects


[1]  Iijima, S., “Helical Microtubules of Graphitic Carbon”, Nature, Vol. 354, No. 6348, pp. 56–58, (1991).
 
[2]  Belin, T., and Epron, F., “Characterization Methods of Carbon Nanotubes: A Review”, Materials Science and Engineering B: Solid-State Materials for Advanced Technology, Vol. 119, No. 2, pp. 105–118, (2005).
 
[3]  Li, F., Cheng, H. M., Bai, S., and Su, G., “Tensile Strength of Single-walled Carbon Nanotubes Directly Measured from Their Macroscopic Ropes”, Applied Physics Letters, Vol. 77, No. 2000, pp. 3161–3163, (2000).
 
[4]  رفیعی, ر., و پورعزیزی, ر., "بررسی تأثیر آسیب ساختاری بر روی خواص مکانیکی نانولوله کربن”، مجله علمی پژوهشی مهندسی مکانیک مدرس، ج 13، ش 13، ص 165–175، (1392).
 
[5]  Sinnott, S. B., “Chemical Functionalization of Carbon Nanotubes”, Journal of Nanoscience and Nanotechnology, Vol. 2, No. 2, pp. 113–123, (2002).
 
[6]  Bahr, J. L., and Tour, J. M., “Covalent Chemistry of Single-wall Carbon Nanotubes”, Journal of Materials Chemistry, Vol. 12, No. 7, pp. 1952–1958, (2002).
 
[7]  Treacy, M. M. J., Ebbesen, T. W., and Gibson, J. M., “Exceptionally High Young`s Modulus Observed for Individual Carbon Nanotubes”, Nature, Vol. 381, No. 6584, pp. 678–680, (1996).
 
[8]  Krishnan, A., Dujardin, E., Ebbesen, T. W., Yianilos, P. N., and Treacy, M. M. J., “Young’s Modulus of Single-walled Nanotubes”, Physical Review B, Vol. 58, No. 20, pp. 14013–14019, (1998).
 
[9]  ذاکری، م.، و بصیری، ا.، "تعیین مدول های برشی و خمشی نانولوله های کربنی با ساختارهای کربنی کایرال"، مجله علمی پژوهشی مهندسی مکانیک مدرس، ج 13، ش 14، ص 56–67، (1392).
 
 [10] Kuwar, M., and Kamal, S., “Molecular Dynamics Simulation Study of Novel Properties of Defect Full Single Walled Carbon Nanotubes”, International Journal of Application or Innovation in Engineering & Management (IJAIEM), Vol. 2, No. 2, pp. 77–81, (2013).
 
[11]  Kumar, A., Sharma, K., Singh, P. K., and Dwivedi, V. K., “Mechanical Characterization of Vacancy Defective Single-walled Carbon Nanotube/epoxy Composites”, Materials Today: Proceedings, Vol. 4, No. 2, pp. 4013–4021, (2017).
 
[12]  Sammalkorpi, M., Krasheninnikov, A., Kuronen, A., Nordlund, K., and Kaski, K., “Mechanical Properties of Carbon Nanotubes with Vacancies and Related Defects”, Physical Review B - Condensed Matter and Materials Physics, Vol. 70, No. 24, pp. 1–8, (2004).
 
[13]  Rafiee, R., “Prediction of Engineering Properties of CNT/epoxy Composites using Stochastic Modeling”, Ph.D. Thesis, Department of Mechanical Engineering, Iran University of Science and Tech, (2010).
 
[14]  Parvaneh, V., and Shariati, M., “Effect of Defects and Loading on Prediction of Young’s Modulus of SWCNTs”, Acta Mechanica, Vol. 216, No. 1–4, pp. 281–289, (2011).
 
[15]  Ghavamian, A., Rahmandoust, M., and Öchsner, A., “A Numerical Evaluation of the Influence of Defects on the Elastic Modulus of Single and Multi-walled Carbon Nanotubes”, Computational Materials Science, Vol. 62, pp. 110–116, (2012).
 
[16]  Ouyang, M., “Atomically Resolved Single-walled Carbon Nanotube Intramolecular Junctions”, Science, Vol. 291, No. 5501, pp. 97–100, (2001).
 
[17]   Gogotsi, Y., “Nanomaterials Handbook”, CRC Press/Taylor & Francis, London & New York, (2006).
 
[18]  Ávila, A. F., and Lacerda, G. S. R., “Molecular Mechanics Applied to Single-walled Carbon Nanotubes”, Materials Research, Vol. 11, No. 3, pp. 325–333, (2008).
 
[19]  Ru, C. Q., “Effective Bending Stiffness of Carbon Nanotubes”, Physical Review B - Condensed Matter and Materials Physics, Vol. 62, No. 15, pp. 9973–9976, (2000).
 
[20]  Pantano, A., Parks, D. M., and Boyce, M. C., “Mechanics of Deformation of Single and Multi-wall Carbon Nanotubes”, Journal of the Mechanics and Physics of Solids, Vol. 52, No. 4, pp. 789–821, (2004).
 [21] Odegard, G. M., Gates, T. S., Nicholson, L. M., and Wise, K. E., “Equivalent-Continuum Modeling of Nano-structured Materials”, Composites Science and Technology, Vol. 62, No. 14, pp. 1869–1880, (2002).
 
[22]  Meo, M., and Rossi, M., “Prediction of Young’s Modulus of Single Wall Carbon Nanotubes by Molecular-mechanics Based Finite Element Modelling”, Composites Science and Technology, Vol. 66, No. 11–12, pp. 1597–1605, (2006).
 
[23]  Wernik, J. M., and Meguid, S. A., “Multiscale Modeling of the Nonlinear Response of Nano-reinforced Polymers”, Acta Mechanica, Vol. 217, No. 1–2, pp. 1–16, (2011).
 
[24]  Tserpes, K. I., and Papanikos, P., “Finite Element Modeling of Single-walled Carbon Nanotubes”, Composites Part B: Engineering, Vol. 36, No. 5, pp. 468–477, (2005).
 
[25]  Li, C., and Chou, T. W., “A Structural Mechanics Approach for the Analysis of Carbon Nanotubes”, International Journal of Solids and Structures, Vol. 40, No. 10, pp. 2487–2499, (2003).
 
[26]  Lu, J. P., “Elastic Properties of Carbon Nanotubes and Nanoropes”, Physical Review Letters, Vol. 79, No. 7, pp. 1297–1300, (1997).
 
[27]  Hernández, E., Goze, C., Bernier, P., and A, R., “Elastic Properties of Single-wall Nanotubes”, Applied Physics A, Vol. 292, pp. 287–292, (1999).
 
[28]  Jin, Y., and Yuan, F. G., “Simulation of Elastic Properties of Single-Walled Carbon Nanotubes”, Composites Science and Technology, Vol. 63, No. 11, pp. 1507–1515, (2003).
 
[29]  Shokrieh, M. M., and Rafiee, R., “Prediction of Young’s Modulus of Graphene Sheets and Carbon Nanotubes using Nanoscale Continuum Mechanics Approach”, Materials & Design, Vol. 31, No. 2, pp. 790–795, (2010).
 
[30]  Chang, T., and Gao, H., “Size-dependent Elastic Properties of a Single-walled Carbon Nanotube via a Molecular Mechanics Model”, Journal of the Mechanics and Physics of Solids, Vol. 51, No. 6, pp. 1059–1074, (2003).
 
[31]  Chen, L., Zhao, Q., Gong, Z., and Zhang, H., “The Effects of Different Defects on the Elastic Constants of Single-walled Carbon Nanotubes”, 2010 IEEE 5th International Conference on Nano/Micro Engineered and Molecular Systems, Xiamen, China, No. 50605039, pp. 777–780, (2010).
 
[32]  Hernandez, E., Goze, C., Bernier, P., and Rubio, A., “Elastic Properties of C and BxCyNz Composite Nanotubes”, Physical Review Letters, Vol. 80, No. 20, pp. 4502–4505, (1998).
 
[33]  Lu, X., and Hu, Z., “Mechanical Property Evaluation of Single-walled Carbon Nanotubes by Finite Element Modeling”, Composites Part B: Engineering, Vol. 43, No. 4, pp. 1902–1913, (2012).
Volume 21, Issue 1 - Serial Number 54
System Dynamics and Solid Mechanics
June 2019
Pages 188-217
  • Receive Date: 16 December 2017
  • Revise Date: 20 April 2018
  • Accept Date: 27 April 2018