حل نیمه تحلیلی تیر بتنی خودترمیم در چارچوب مکانیک محیط پیوسته آسیب-ترمیم

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشجوی دکترا، دانشکده مهندسی مکانیک، دانشگاه تهران

2 نویسنده مسئول، دانشیار، دانشکده مهندسی مکانیک، دانشگاه تهران

3 دکترا، دانشکده مهندسی مکانیک، دانشگاه صنعتی شریف

چکیده

دراین مقاله مدل‌سازی نیمه‌تحلیلی برای پیش‌بینی رفتار تیربتنی خودترمیم ارائه شده است. دراین راستا یک مدل ساختاری برای پیش‌بینی رفتارموادخودترمیم استفاده شده است. رشد متغیرهای آسیب و ترمیم به عنوان متغیرهای داخلی به دست آمده و سطوح آسیب و ترمیم کششی و فشاری برای تشخیص رفتار آسیب و ترمیم از رفتارالاستیک، معرفی شده است. صحت‌سنجی پاسخ با حل یک مثال برای تیرتحت بارگذاری گسترده انجام شده است. نتایج بدست آمده نشان دادند که برای هندسه بیان شده تیربتنی خودترمیم 21٪ ازتیر بتنی ساده باربیشتری را تحمل می‌کند، همچنین خیزتیر خودترمیم تابارگذاری نهایی 27٪ بزرگتراز بارگذاری نهایی تیر بتنی ساده می‌باشد.

کلیدواژه‌ها

موضوعات


 
[1] Brown, E., Sottos, N.R., and White, S.R., "Fracture Testing of a Self-healing Polymer
Composite", Experimental Mechanics, Vol. 42, pp. 372-379, (2002).
[2] Williams, G., Trask, R., and Bond, I., "A Self-healing Carbon Fibre Reinforced Polymer
for Aerospace Applications", Composites Part A: Applied Science and Manufacturing,
Vol. 38, pp. 1525-1532, (2007).
[3] Darabi, M.K., Abu Al-Rub, R.K., Masad, E.A., Huang, C. W., and Little, D.N., "A
Thermo-viscoelastic–viscoplastic–viscodamage Constitutive Model for Asphaltic
Materials", International Journal of Solids and Structures, Vol. 48, pp. 191-207, (2011).
[4] Yazdani, S., and Schreyer, H.L., "Combined Plasticity and Damage Mechanics Model for
Plain Concrete", Journal of Engineering Mechanics, Vol. 116, pp. 1435-1450, (1990).
[5] Chaboche, J.L.L., "Damage Induced Anisotropy: On the Difficulties Associated with the
Active/Passive Unilateral Condition", International Journal of Damage Mechanics, Vol.
1, pp. 148-171, (1992).
[6] Abu-Lebdeh, T.M., Voyiadjis, G.Z., Abu Lebdeh, T.M., Voyiadjis, G.Z., Abu-Lebdeh,
T.M., and Voyiadjis, G.Z., "Plasticity-damage Model for Concrete under Cyclic
Multiaxial Loading", Journal of Engineering Mechanics, Vol. 119, pp. 1465-1484, (1993).
[7] Lubarda, V.A.V.A., Krajcinovic, D., and Mastilovic, S., "Damage Model for Brittle
Elastic Solids with Unequal Tensile and Compressive Strengths", Engineering Fracture
Mechanics, Vol. 49, pp. 681-697, (1994).
[8] Murakami, S., and Kamiya, K., "Constitutive and Damage Evolution Equations of Elastic-
Brittle Materials Based on Irreversible Thermodynamics", International Journal of
Mechanical Sciences, Vol. 39, pp. 473-486, (1997).
[9] Faria, R., Oliver, J., and Cervera, M., "A Strain-based Plastic Viscous-damage Model for
Massive Concrete Structures", International Journal of Solids and Structures, Vol. 35, pp.
1533-1558, (1998).
[10] Boudon-Cussac, D., Hild, F., and Pijaudier-Cabot, G., "Tensile Damage in Concrete:
Analysis of Experimental Technique", Journal of Engineering Mechanics, Vol. 125, pp.
906-913, (1999).
[11] Grassl, P., and Jirásek, M., "Damage-plastic Model for Concrete Failure", International
Journal of Solids and Structures, Vol. 43, pp. 7166-7196, (2006).
[12] Wu, J.Y., Li, J., and Faria, R., "An Energy Release Rate-based Plastic-damage Model for
Concrete", International Journal of Solids and Structures, Vol. 43, pp. 583-612, (2006).
[13] Cicekli, U., Voyiadjis, G.Z., and Abu Al-Rub, R.K., "A Plasticity and Anisotropic
Damage Model for Plain Concrete", International Journal of Plasticity, Vol. 23, pp.
1874-1900, (2007).
[14]Voyiadjis, G.Z., Taqieddin, Z.N., and Kattan, P.I., "Theoretical Formulation of a Coupled
Elastic-plastic Anisotropic Damage Model for Concrete using the Strain Energy
Equivalence Concept", International Journal of Damage Mechanics, Vol. 18, pp. 603-
638, (2009).
[15]Voyiadjis, G.Z., Taqieddin, Z.N., and Kattan, P.I., "Anisotropic Damage-plasticity Model
for Concrete", International Journal of Plasticity, Vol. 24, pp. 1946-1965, (2008).
[16] Yu, T., "Statistical Damage Constitutive Model of Quasi-brittle Materials", Journal of
Aerospace Engineering, Vol. 22, pp. 95-100, (2009).
[17] Hansen, N.R.R., and Schreyer, H.L.L., "A Thermodynamically Consistent Framework
for Theories of Elastoplasticity Coupled with Damage", International Journal of Solids
and Structures, Vol. 31, pp. 359-389, (1994).
[18] Ortiz, M., "A Constitutive Theory for the Inelastic Behavior of Concrete", Mechanics of
Materials, Vol. 4, pp. 67-93, (1985).
[19] Hayakawa, K., and Murakami, S., "Space of Damage Conjugate Force and Damage
Potential of Elastic-Plastic-Damage Materials", Studies in Applied Mechanics, Vol. 46,
pp. 27-44, (1998).
[20] Bielski, J., Skrzypek, J.J., and Kuna-Ciskał, H., "Implementation of a Model of Coupled
Elastic-Plastic Unilateral Damage Material to Finite Element Code", International
Journal of Damage Mechanics, Vol. 15, pp. 5-40, (2006).
[21] Chow, C.L., and Wang J., "An Anisotropic Theory of Elasticity for Continuum Damage
Mechanics", International Journal of Fracture, Vol. 33, pp. 3-16, (1987).
[22] Luccioni, B.M.M., and Rougier, V.C.C., "A Plastic Damage Approach for Confined
Concrete", Computers and Structures, Vol. 83, pp. 2238-2256, (2005).
[23] Abu Al-Rub, R.K., and Kim, S.M., "Computational Applications of a Coupled Plasticity-
Damage Constitutive Model for Simulating Plain Concrete Fracture", Engineering
Fracture Mechanics, Vol. 77, pp. 1577-1603, (2010).
[24] Richard, B., Ragueneau, F., Cremona, C., and Adelaide, L., "Isotropic Continuum
Damage Mechanics for Concrete under Cyclic Loading: Stiffness Recovery, Inelastic
Strains and Frictional Sliding", Engineering Fracture Mechanics, Vol. 77, pp. 1203-
1223, (2010).
[25] Jung, D., Hegeman, A., Sottos, N.R., Geubelle, P.H., and White, S.R., "Self-healing
Composites using Embedded Microspheres", American Society of Mechanical
Engineers, Materials Division (Publication) MD, Vol. 80, pp. 265-275, (1997).
[26] Kachanov, L.M., "Time of the Rupture Process under Creep Conditions", Isv. Akad.
Nauk. SSR. Otd Tekh. Nauk, Vol. 8, pp. 26-31, (1958).
[27] Rabotnov, Y.N., "Creep Rupture", Applied Mechanics, pp. 342-349, Springer, Berlin,
Heidelberg, Germany, (1969).
[28] Ganjiani, M., Naghdabadi, R., and Asghari, M., "Analysis of Concrete Pressure Vessels
in the Framework of Continuum Damage Mechanics", International Journal of Damage
Mechanics, Vol. 21, pp. 843-870, (2012).
[29] Ganjiani, M., Naghdabadi, R., and Asghari, M., "An Elastoplastic Damage-induced
Anisotropic Constitutive Model at Finite Strains", International Journal of Damage
Mechanics, Vol. 22, pp. 499-529, (2012).
[30] Miao, S., Wang, M.L., and Schreyer, H.L., "Constitutive Models for Healing of Materials
with Application to Compaction of Crushed Rock Salt", Journal of Engineering
Mechanics, Vol. 121, pp. 1122-1129, (1995).
[31] Barbero, E.J., and Lonetti, P., "Application of Continuum Damage Healing Mechanics to
Self-Healing Composites", ASME 2003 International Mechanical Engineering Congress
and Exposition, American Society of Mechanical Engineers, pp. 515-519, Washington,
DC, USA, (2003).
[32] Barbero, E.J., "Continuum Damage-healing Mechanics with Application to Self-healing
Composites", International Journal of Damage Mechanics, Vol. 14, pp. 51-81, (2005).
[33]Barbero, E.J., and Ford, K.J., "Characterization of Self-healing Fiber-reinforced Polymer-
Matrix Composite with Distributed Damage", Journal of Advanced Materials -Covina-,
Vol. 39, pp. 20-27, (2007).
[34]Voyiadjis, G.Z., Shojaei, A., and Li, G., "A Generalized Coupled Viscoplastic–
viscodamage–viscohealing Theory for Glassy Polymers", International Journal of
Plasticity, Vol. 28, pp. 21-45, (2012).
[35] Voyiadjis, G.Z., Shojaei, A., Li, G., and Kattan, P.I., "A Theory of Anisotropic Healing
and Damage Mechanics of Materials", Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences, Vol. 468, pp. 163-183, (2011).
[36] Zhu, H., Zhou, S., Yan, Z., Ju, J.W., and Chen, Q., "A Two-dimensional
Micromechanical Damage-healing Model on Microcrack-Induced Damage for
Microcapsule-Enabled Self-healing Cementitious Composites under Tensile Loading",
International Journal of Damage Mechanics, Vol. 24, No. 1, pp. 95-115, (2014).
[37] Zemskov, S. V, Jonkers, H.M., and Vermolen, F.J., "A Mathematical Model for Bacterial
Self-Healing of Cracks in Concrete", Journal of Intelligent Material Systems and
Structures, Vol. 25, pp. 4-12, (2014).
[38] Hilloulin, B., Van Tittelboom, K., Gruyaert, E., De Belie, N., and Loukili, A., "Design of
Polymeric Capsules for Self-healing Concrete", Cement and Concrete Composites, Vol.
55, pp. 298-307, (2015).
[39] Mignon, A., Graulus, G. J., Snoeck, D., Martins, J., De Belie, N., Dubruel, P., and Van
Vlierberghe, S., "PH-Sensitive Superabsorbent Polymers: A Potential Candidate Material
for Self-healing Concrete", Journal of Materials Science, Vol. 50, pp. 970-979, (2015).
[40] Shahsavari, H., Baghani, M., Sohrabpour, S., and Naghdabadi, R., "Continuum Damage-
Healing Constitutive Modeling for Concrete Materials Through Stress Spectral
Decomposition", International Journal of Damage Mechanics, Vol. 25, Issue. 6, pp. 900-
918, (2015).
[41] Al-Rub, R.K.A., and Darabi, M.K., "A Thermodynamic Framework for Constitutive
Modeling of Time and Rate-dependent Materials, Part I: Theory", International Journal
of Plasticity, Vol. 34, pp. 61-92, (2012).
[42] Lu, T.J.J., and Chow, C.L.L., "On Constitutive Equations of Inelastic Solids with
Anisotropic Damage", Theoretical and Applied Fracture Mechanics, Vol. 14, pp. 187-
218, (1990).
[43] Voyiadjis, G.Z., and Kattan, P.I., "Advances in Damage Mechanics: Metals and Metal
Matrix Composites with an Introduction to Fabric Tensors", Elsevier, (2010).
[44] Simo, J.C., and Ju, J.W., "Strain and Stress-based Continuum Damage Models-II.
Computational Aspects", International Journal of Solids and Structures, Vol. 23, pp.
841-869, (1987).
[45] Chow, C.L.L., and Wang, J., "An Anisotropic Theory of Continuum Damage Mechanics
for Ductile Fracture", Engineering Fracture Mechanics, Vol. 27, pp. 547-558, (1987).
[46] Hayakawa, K., and Murakami, S., "Thermodynamical Modeling of Elastic-plastic
Damage and Experimental Validation of Damage Potential", International Journal of
Damage Mechanics, Vol. 6, pp. 333-363, (1997).
[47] Voyiadjis, G.Z., Abu Al-Rub, R.K., Shojaei, A., and Li, G., "A Thermodynamic
Consistent Damage and Healing Model for Self Healing Materials", International
Journal of Plasticity, Vol. 27, pp. 1025-1044, (2011).