بررسی عددی نیروهای موثر بر سرعت‌نسبی و انتقال‌حرارت جابجایی ‌آزاد آرام نانوسیال در جعبه‌ابزار اپنفوم

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک, دانشگاه تربیت دبیر شهید رجایی, تهران, ایران

2 دانشگاه تربیت دبیر شهید رجایی - تهران- ایران

چکیده

رفتار حرارتی نانوسیال آلومینا-آب تحت تأثیر نیروهای مختلف بر روی سرعت‌نسبی در محفظه مربعی‌شکل دو ‌بعدی توسط حلگر توسعه یافته در کارابزار متن‌باز اپنفوم بررسی شده است. این نیروها که شامل اینرسی، انتشار ‌براونی، ترموفورسیس، دیفیوزوفورسیس، اثر مگنوس، زهکشی‌سیالات و گرانش می‌باشند مورد مطالعه قرار گرفته و مهم‌ترین آن‌ها به صورت پارامتPj وارد معادلات بقای مخلوط گردید. شبیه‌سازی با استفاده از الگوریتم پیمپل (سیمپل+پیزو) و تقریب بوزینسک بر روی جریان‌جابجایی-آزاد و آرام انجام شده است. نتایج مربوط به روش‌های مختلف در نمودارهای عدد ناسلت–عدد رایلی ارائه شد. بررسی این نتایج بیانگر دقت بهتر حلگر ارائه شده در این مقاله است.

کلیدواژه‌ها

موضوعات


[1] Iwatsu, R., Hyun, J. M., and Kuwahara, K., "Mixed Convection in a Driven Cavity with
a Stable Vertical Temperature Gradient", International Journal of Heat and Mass Transfer,
Vol. 36, pp. 1601-1608, (1993).
[2] Pang, C., Lee, J.W., and Hong, H., “Heat Conduction Mechanism in Nanofluids”, J. Mech.
Sci Technol, Vol. 28, pp. 2925-2936, (2014).
[3] Keblinski, P., Phillpot, S. R., Choi, S. U. S., and Eastman, J. A., “Mechanisms of Heat Flow
in Suspensions of Nano-sized Particles (Nanofluids)”, International Journal of Heat and
Mass Transfer, Vol. 45, pp. 855-863, (2002).
[4] Machrafi, H., and Lebon, G., "The Role of Several Heat Transfer Mechanisms on the
Enhancement of Thermal Conductivity in Nanofluids", Continuum Mech.
Thermodynamic, Vol. 28, pp. 1461-1475, (2016).
[5] Nalwa, H., "Encyclopedia of Nanoscience and Nanotechnology", American Scientific
Publishers, Vol. 6, pp. 757-759, (2004).
[6] Maxwell, J. C., “A Treatise on Electricity and Magnetism”, Clarendon Press, Vol. 1, Oxford,
UK, (1873).
[7] Maxwell, J. C., “A Treatise on Electricity and Magnetism”, 3rd Edition, Clarendon Press,
Vol. 2, Oxford, UK, (1904).
[8] Kefayati, G. H. R., and Sidik, N. A. C., “Simulation of Natural Convection and Entropy
Generation of Non-Newtonian Nanofluid in an Inclined Cavity using Buongiorno’s
Mathematical Model (Part II, Entropy Generation)”, Powder Technol., Vol. 305, pp. 679-
703, (2017).
[9] Kefayati, G. H. R., “Simulation of Natural Convection and Entropy Generation of Non
Newtonian Nanofluid in a Porous Cavity using Buongiorno’s Mathematical Model”, Int. J.
Heat Mass Transfer, Vol. 112, pp. 709-744, (2017).
[10] Kasaeian, A., Daneshazarian, R., Mahian, O., Kolsi, L., Chamkha, A., Wongwises, S., and
Pop, L., “Nanofluid Flow and Heat Transfer in Porous Media: A Review of the Latest
Developments”, Int. J. Heat Mass Transfer, Vol. 107, pp. 778-791, (2017).
[11] Buongiorno, J., Venerus, D. C., Prabhat, N., McKrell, T., Townsend, J., Christianson, R.,
Tolmachev, Y. V., Keblinski, P., Hu, L. W., and Alvarado, J. L., “A Benchmark Study on
the Thermal Conductivity of Nanofluids”, Journal of Applied Physics, Vol. 106, 094312-
1-14, (2009).
[12] Solangi, K. H., Kazi, S. N., Luhur, M. R., Badarudin, A., Amiri, A., Sadri, R., Zubir, M.N.,
Gharehkhani, S., and Teng, K. H., “A Comprehensive Review of Thermo-physical
Properties and Convective Heat Transfer to Nanofluids”, Energy, Vol. 89, pp. 1065-1086,
(2015).
[13] Rahimi, A., Kasaeipoor, A., Malekshah, E. H., and Kolsi, L., “Experimental and Numerical
Study on Heat Transfer Performance of Three-dimensional Natural Convection in an
Enclosure Filled with DWCNTs-Water Nanofluid”, Powder Technol., Vol. 322, pp. 340-
352, (2017).
[14] Ho, C. J., Liu, W. K., Chang, Y. S., and Lin, C. C., “Natural Convection Heat Transfer of
Alumina-water Nanofluid in Vertical Square Enclosures: An Experimental Study”,
International Journal of Thermal Sciences, Vol. 49, pp. 1345-1353, (2010).
[15] Moradi, H., Bazooyar, B., Moheb, A., and Etemad, S., “Optimization of Natural
Convection Heat Transfer of Newtonian Nanofluids in a Cylindrical Enclosure”, Chinese
Journal of Chemical Engineering, Vol. 23, 10.1016/j.cjche.2015.04.002, (2015).
[16] Li, C. H., and Peterson, G. P., “Experimental Studies of Natural Convection Heat Transfer
of Al2O3/DI Water Nanoparticle Suspensions (Nanofluids)”, Advances in Mechanical
Engineering, Vol. 02, 10.1155/2010/403816, (2010).
[17] Maiga, S., Palm, S., Nguyen, C., Roy, G., and Galanis, N., “Heat Transfer Enhancement
by using Nanofluids in Forced Convection Flows”, International Journal of Heat and Fluid
Flow, Vol. 26, pp. 530-546, 10.1016/j.ijheatfluidflow.2005.02.004, (2005).
[18] Ternik, P., and Rudolf, R., “Heat Transfer Enhancement for Natural Convection Flow of
Waterbased Nanofluids in a Square Enclosure”, International Journal of Simulation
Modelling, Vol. 11, pp. 29-39, (2012).
[19] Mehrez, Z., Bouterra, M., El Cafsi, A., and Belghith, A., “Heat Transfer and Entropy
Generation Analysis of Nanofluids Flow in an Open Cavity”, Computers & Fluids, Vol.
88, pp. 363-373, (2013).
[20] Behzadmehr, A., Saffar-Avval, M., and Galanis, N., “Prediction of Turbulent Forced
Convection of a Nanofluid in a Tube with Uniform Heat Flux using a Two Phase
Approach”, International Journal of Heat and Fluid Flow, Vol. 28, pp. 211-219, (2007).
[21] Garoosi, F., Garoosi, S., and Hooman, K., “Numerical Simulation of Natural Convection
and Mixed Convection of the Nanofluid in a Square Cavity using Buongiorno Model”,
Powder Technology, Vol. 268, pp. 279-292, (2014).
[22] Akbari, M., Galanis, N., and Behzadmehr, A., “A Comparative Analysis of Single and
Two Phase Models for CFD Studies of Nanofluid Heat Transfer”, International Journal of
Thermal Sciences, Vol. 50, pp. 1343-1354, (2011).
[23] Alsabery, A., Tayebi, T., Chamkha, A., and Hashim, I., “Effects of Non-homogeneous
Nanofluid Model on Natural Convection in a Square Cavity in the Presence of Conducting
Solid Block and Corner Heater”, Energies, Vol. 11. pp. 1-27, 10.3390/en11102507,
(2018).
[24] Hazeri-Mahmel, N., Shekari, Y., and Tayebi, A., “Numerical Study of Mixed Convection
Heat Transfer in a Cavity Filled with Non-Newtonian Nanofluids Utilizing Two-phase
Mixture Model”, Amirkabir J. Mech. Eng. Vol. 50, No. 6, pp. 389-392, (2018).
[25] Meng, X., Zhang, X., and Li, Q., "Numerical Investigation of Nanofluid Natural
Convection Coupling with Nanoparticles Sedimentation", Applied Thermal Engineering,
Vol. 95, pp. 411-420, (2016).
[26] Baghsaz, S., Rezanejad, S., and Moghimi, M., “Numerical Investigation of Transient
Natural Convection and Entropy Generation Analysis in a Porous Cavity Filled with
Nanofluid Considering Nanoparticles Sedimentation, Journal of Molecular Liquids, Vol.
279, pp. 327-341, (2019).
[27] Cheng, C.Y., "Free Convection of Non-Newtonian Nanofluids about a Vertical Truncated
Cone in a Porous Medium", International Communications in Heat and Mass Transfer,
Vol. 39, pp. 1348-1353, (2012).
[28] Haddad, Z., Abu-Nada, V., Oztop, H. F., and Mataoui, A., “Natural Convection in
Nanofluids: Are the Thermophoresis and Brownian Motion Effects Significant in
Nanofluid Heat Transfer Enhancement”, Int. J. Therm. Sci. Vol. 57, pp. 152-162, (2012).
[29] Buongiomo, J., “Convective Transport in Nanofluids”, J. Heat Transfer. Vol. 128, pp. 240,
(2006).
[30] Shariat, M., Moghari, R.M., Akbarinia, A., Rafee, R., and Sajjadi, S.M., “Impact of
Nanoparticle Mean Diameter and the Buoyancy Force on Laminar Mixed Convection
Nanofluid Flow in an Elliptic Duct Employing Two Phase Mixture Model”, Int. Commun.
Heat Mass Transf. Vol. 50, pp. 15-24, (2014).
[31] Pakravan, H.A., and Yaghoubi, M., “Analysis of Nanoparticles Migration on Natural
Convective Heat Transfer of Nanofluids”, Int. J. Therm. Sci. Vol. 68, pp. 79-93, (2013).
[32] Khanafer, K., Vafai, K., and Lightstone, M., “Buoyancy-driven Heat Transfer
Enhancement in a Two-dimensional Enclosure Utilizing Nanofluids”, International
Journal of Heat and Mass Transfer, Vol. 46, No. 19, pp. 3639-3653, (2003).
[33] Ho, C.J., Liu, W.K., Chang, Y.S., and Lin, C. C., “Natural Convection Heat Transfer of
Alumina-water Nanofluid in Vertical Square Enclosures: An Experimental Study”,
International Journal of Thermal Sciences. Vol. 49, pp. 1345-1353,
10.1016/j.ijthermalsci.2010.02.013, (2010).
[34] Sheikhzadeh, G.A., and Dastmalchi, M., and Khorasanizadeh, H., “Effects of
Nanoparticles Transport Mechanisms on Al2O3-Water Nanofluid Natural Convection in
a Square Enclosure”, International Journal of Thermal Sciences, Vol. 66, pp. 51-62,
10.1016/j.ijthermalsci.2012.12.001, (2013).