اثر شکل و نسبت ابعاد دیواره بر انتقال حرات سیال غیرنیوتنی با مدل توانی در حضور میدان مغناطیسی

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک دانشگاه یزد یزد ایران

2 دانشکده مهندسی مکانیک، دانشگاه یزد، یزد، ایران

3 دانشکده مهندسی مکانیک، دانشگاه علم و صنعت، ایران

چکیده

در این مطالعه اثر میدان مغناطیسی و شکل و نسبت ابعاد دیواره محفظه بر انتقال حرارت جابجایی طبیعی سیال غیرنیوتنی با مدل توانی به روش شبکه بولتزمن بررسی شده است.دیواره سمت چپ و راست بترتیب در دمای ثابت گرم و سردقرار دارد و سایر دیواره ها آدیاباتیک هستند.تأثیر پارامترهایی چون عدد هارتمن، شاخص توانی سیال غیرنیوتنی، نسبت ابعاد و شکل دیواره محفظه بررسی شده است.نتایج نشان میدهد افزایش شاخص توانی، نسبت ابعاد و عدد هارتمن سبب کاهش عدد ناسلت متوسط میگردد.عموماً بیشترین انتقال حرارت مربوط به حالتی است که دیواره مورب باشد.افزایش شاخص توانی سبب کاهش اثر میدان مغناطیسی میگردد.

کلیدواژه‌ها

موضوعات


[1] Raizah, Z.A.S., Abdelraheem, M. Aly., and Ahmed, S. E., "Natural Convection Flow of a
Power-law Non-Newtonian Nanofluid in Inclined Open Shallow Cavities Filled with
Porous Media", International Journal of Mechanical Sciences, Vol. 140, pp. 376-393,
(2018).
[2] Zhang, R., Aghakhani, S., Pordanjani, A. H., Vahedi, S. M., Shahsavar, A., and Afrand,
M., "Investigation of the Entropy Generation during Natural Convection of Newtonian
and Non-Newtonian Fluids Inside the L-shaped Cavity Subjected to Magnetic Field:
Application of Lattice Boltzmann Method", The European Physical Journal Plus, Vol.
135, pp. 184, (2020).
[3] Alwawi, F. A., Alkasasbeh, H. T., Rashad, A., and Idris, R., "MHD Natural Convection
of Sodium Alginate Casson Nanofluid over a Solid Sphere", Results in Physics, Vol. 16,
pp. 802-818, (2020).
[4] Nemati, M., Jahangiri, R., and Khalilian, M., "Analysis of Heat Transfer in the Cavity
with Different Shapes Filled Nanofluid in the Presence of Magnetic Field with Heat
Generation/absorption using LBM", Journal of Mechanical Engineering and Vibration,
Vol. 10, pp. 51-62, (2020).
[5] Vijaybabu, T., and Dhinakaran, S., "MHD Natural Convection Around a Permeable
Triangular Cylinder Inside a Square Enclosure Filled with Al2O3−H2O Nanofluid: An
LBM Study", International Journal of Mechanical Sciences, Vol. 153, pp. 500-516,
(2019).
[6] Alhashash, A., "Natural Convection of Nanoliquid from a Cylinder in Square Porous
Enclosure using Buongiorno’s Two-phase Model", Scientific Reports, Vol. 10, pp. 1-12,
(2020).
[7] Yazdani, K., Sahebjamei, M., and Ahmadpour, A., "Natural Convection Heat Transfer and
Entropy Generation in a Porous Trapezoidal Enclosure Saturated with Power-law Non-
Newtonian Fluids", Heat Transfer Engineering, Vol. 41, pp. 982-1001, (2020).
[8] Nemati, M., Sefid, M., Rahmati A. R., "The Effect of Changing the Position of the Hot
Wall and Increasing the Amplitude and Number of Oscillations of Wavy Wall on the
Flow and Heat Transfer of Nanofluid Inside the Channel in the Presence of Magnetic
Field", Journal of Solid and Fluid Mechanics, Vol. 10, pp. 219-236, (2020).
[9] Ghadikolaei, S., Gholinia, M., Hoseini, M., and Ganji, D., "Natural Convection MHD
Flow Due to MoS2–Ag Nanoparticles Suspended in C2H6O2H2O Hybrid Base Fluid with
Thermal Radiation", Journal of the Taiwan Institute of Chemical Engineers, Vol. 97, pp.
12-23, (2019).
[10] Du, R., Gokulavani, P., Muthtamilselvan, M., Al-Amri, F., and Abdalla, B., "Influence
of the Lorentz Force on the Ventilation Cavity Having a Centrally Placed Heated Baffle
Filled with the Cu− Al2O3− H2O Hybrid Nanofluid", International Communications in
Heat and Mass Transfer, Vol. 116, pp. 104676, (2020).
[11] Rahmati, A. R., and Nemati, M., "Investigation of Magnetic Field Effect on Nanofluid
Mixed Convection Inside Lid-driven K-shaped Enclosure using Lattice Boltzmann
Method", Journal of Solid and Fluid Mechanics, Vol. 8, pp. 111-126, (2018).
[12] Ma, Y., Mohebbi, R., Rashidi, M., Yang, Z., and Sheremet, M. A., "Numerical Study of
MHD Nanofluid Natural Convection in a Baffled U-shaped Enclosure", International
Journal of Heat and Mass Transfer, Vol. 130, pp. 123-134, (2019).
[13] Siavashi, M., Karimi, K., Xiong, Q., and Doranehgard, M. H., "Numerical Analysis of
Mixed Convection of Two-phase Non-Newtonian Nanofluid Flow Inside a Partially
Porous Square Enclosure with a Rotating Cylinder", Journal of Thermal Analysis and
Calorimetry, Vol. 137, pp. 267-287, (2019).
[14] Bozorg, M. V., and Siavashi, M., "Two-phase Mixed Convection Heat Transfer and
Entropy Generation Analysis of a Non-Newtonian Nanofluid Inside a Cavity with
Internal Rotating Heater and Cooler", International Journal of Mechanical Sciences, Vol.
151, pp. 842-857, (2019).
[15] Naganthran, K., Nazar, R., and Pop, I., "A Study on Non-Newtonian Transport
Phenomena in a Mixed Convection Stagnation Point Flow with Numerical Simulation
and Stability Analysis", The European Physical Journal Plus, Vol. 134, pp. 1-14, (2019).
[16] Mohebbi, R., Delouei, A. A., Jamali, A., Izadi, M., and Mohamad, A. A., "Pore-scale
Simulation of Non-Newtonian Power-law Fluid Flow and Forced Convection in Partially
Porous Media: Thermal Lattice Boltzmann Method", Physica A: Statistical Mechanics
and Its Applications, Vol. 525, pp. 642-656, (2019).
[17] Moradicheghamahi, J., Sadeghiseraji, J., and Jahangiri, M., "Numerical Solution of the
Pulsatile, Non-Newtonian and Turbulent Blood Flow in a Patient Specific Elastic Carotid
Artery", International Journal of Mechanical Sciences, Vol. 150, pp. 393-403, (2019).
[18] Foong, L. K., Shirani, N., Toghraie, D., Zarringhalam, M., and Afrand, M., "Numerical
Simulation of Blood Flow Inside an Artery under Applying Constant Heat Flux using
Newtonian and Non-Newtonian Approaches for Biomedical Engineering", Computer
Methods and Programs in Biomedicine, Vol. 190, pp. 105375, (2020).
[19] Raisi, A., "The Influence of a Pair Constant Temperature Baffles on Power-law Fluids
Natural Convection in a Square Enclosure", Modares Mechanical Engineering, Vol. 15,
pp. 215-224, (2015).
[20] Aghakhani, S., Pordanjani, A. H., Karimipour, A., Abdollahi, A., and Afrand, M.,
"Numerical Investigation of Heat Transfer in a Power-law non-Newtonian Fluid in a CShaped
Cavity with Magnetic Field Effect using Finite Difference Lattice Boltzmann
Method", Computers & Fluids, Vol. 176, pp. 51-67, (2018).
[21] Kefayati, G. R., and Tang, H., "MHD Thermosolutal Natural Convection and Entropy
Generation of Carreau Fluid in a Heated Enclosure with Two Inner Circular Cold
Cylinders, using LBM", International Journal of Heat and Mass Transfer, Vol. 126, pp.
508-530, (2018).
[22] Toghaniyan, A., Zarringhalam, M., Akbari, O. A., Shabani, G. A. S., and Toghraie, D.,
"Application of Lattice Boltzmann Method and Spinodal Decomposition Phenomenon
for Simulating Two-phase Thermal Flows", Physica A: Statistical Mechanics and Its
Applications, Vol. 509, pp. 673-689, (2018).
[23] Rahimi, A., Sepehr, M., Lariche, M. J., Mesbah, M., Kasaeipoor, A., and Malekshah, E.
H., "Analysis of Natural Convection in Nanofluid-filled H-shaped Cavity by Entropy
Generation and Heatline Visualization using Lattice Boltzmann Method", Physica E:
Low-dimensional Systems and Nanostructures, Vol. 97, pp. 347-362, (2018).
[24] Kefayati, G. R., "FDLBM Simulation of Mixed Convection in a Lid-driven Cavity Filled
with Non-Newtonian Nanofluid in the Presence of Magnetic Field", International Journal
of Thermal Sciences, Vol. 95, pp. 29-46, (2015).
[25] Kefayati, G. R., "FDLBM Simulation of Entropy Generation in Double Diffusive Natural
Convection of Power-law Fluids in an Enclosure with Soret and Dufour Effects",
International Journal of Heat and Mass Transfer, Vol. 89, pp. 267-290, (2015).
[26] Yin, X., and Zhang, J., "An Improved Bounce-back Scheme for Complex Boundary
Conditions in Lattice Boltzmann Method", Journal of Computational Physics, Vol. 231,
pp. 4295-4303, (2012).
[27] Nemati, M., Mohamadzade, H., Sefid, M., "Investigation the Effect of Direction of Wall
Movement on Mixed Convection in Porous Enclosure with Heat Absorption/Generation
and Magnetic Field", Fluid Mechanics & Aerodynamics Journal, Vol. 9, No. 1, pp. 99-
115, (2020).
[28] Wang, Z., Wei, Y., and Qian, Y., "A Bounce Back-immersed Boundary-lattice
Boltzmann Model for Curved Boundary", Applied Mathematical Modelling, Vol. 81, pp.
428-440, (2020).
[29] Shahriari, A., and Ashorynejad, H. R., “Numerical Study of Heat Transfer and Entropy
Generation of Rayleigh-B enard Convection Nanofluid in Wavy Cavity with Magnetic
Field”, Modares Mechanical Engineering, Vol. 17, pp. 385-396, (2017).