پیش‌بینی عمر مفید یاتاقان غلتشی مبتنی‌بر آنالیز ارتعاشی با روش های تجزیه سیگنال به مولفه‌ مدهای ذاتی

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 کارشناس ارشد، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران

2 نویسنده مسئول، استادیار، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران

3 استادیار، گروه مهندسی کشاورزی، دانشگاه فنی و حرفه ای، تهران، ایران

4 استادیار، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران

چکیده

در این تحقیق از روشی مبتنی بر پردازش سیگنال و هوش مصنوعی برای تخمین عمر باقی مانده یاتاقان استفاده شد. سیگنال‌ها توسط روش تجزیه مدهای ذاتی(EMD)  پردازش شدند. سپس ده ویژگی استخراج شد. سپس از ویژگی‌های استخراجی جهت مدلسازی روش تخمین عمر باقی مانده استفاده شد. ضریب همبستگی بین مقدار پیش‌بینی شده توسط شبکه عصبی و مقدار واقعی به ازای ویژگی‌های استخراجی از روش EMD 9260/0 به دست آمد. سپس شبکه عصبی به ازای ویژگی‌های برتر مدلسازی شد و نتایج نشان داد که ضریب همبستگی بین مقدار واقعی و مقدار پیش بینی شده برای روش‌ و EMD 94307/0 به دست آمد.

کلیدواژه‌ها

موضوعات


[1] Hamadache, M., and Lee, D., ̎Principal Component Analysis Based Signal-to-noise Ratio Improvement for Inchoate Faulty Signals: Application to Ball Bearing Fault Detection", International Journal of Control, Automation and Systems, Vol. 15, No. 2, pp. 506-517, (2017).
[2] Hinchi, A.Z., and Tkiouat, M., ̎Rolling Element Bearing Remaining Useful Life Estimation Based on a Convolutional Long-short-term Memory Network, Procedia Computer Science, Vol. 127, pp. 123-132, (2018).
[3] Zhu, J., Chen, N., and Peng, W., ̎Estimation of Bearing Remaining Useful Life Based on Multiscale Convolutional Neural Network, IEEE Transactions on Industrial Electronics, Vol. 66, No. 4, pp. 3208-3216, (2018).
[4] Ammar, D.M., Younes, M.A., and Elsayed, E.S., "Prediction of Bearing Remaining Useful Life Based on Euclidean Distance using an Artificial Neural Network Approach", Proceedings of the Fifth International Conference on Advances in Mechanical and Robotics Engineering (AMRE), Rome, Italy, (2017).
[5] Si, X.S., Wang, W., Hu, C.H., and Zhou, D.H., "Remaining Useful Life Estimation–A Review on the Statistical Data Driven Approaches", European Journal of Operational Research, Vol. 213, No. 1, pp. 1-14, (2011).
[6] Eftekharnejad, B., and Mba, D., "Seeded Fault Detection on Helical Gears with Acoustic Emission", Applied Acoustics, Vol. 70, No. 4, pp. 547-555, (2009).
[7] Faghidi, H., and Liang, M., "Bearing Fault Identification by Higher Order Energy Operator Fusion: A Non-resonance Based Approach", Journal of Sound and Vibration, Vol. 381, pp. 83-100, (2016).
[8] Wang, W.J., Cui, L.L., and Chen, D.Y, "Multi-scale Morphology Analysis of Acoustic Emission Signal and Quantitative Diagnosis for Bearing Fault", Acta Mechanica Sinica, Vol. 32, No. 2, pp. 265-272, (2016).
[9] Chen, S.L., Craig, M., Wood, R.J.K., Wang, L., Callan, R., and Powrie, H.E.G., "Bearing Condition Monitoring using Multiple Sensors and Integrated Data Fusion Techniques", In 9th International Conference in Vibrations in Rotating Machinery, Oxford, United Kingdom, pp. 586-600, (2008).
[10] Schulz, R., Verstockt, S., Vermeiren, J., Loccufier, M., Stockman, K., and Van Hoecke, S., "Thermal Imaging for Monitoring Rolling Element Bearings", In 12th International Conference on Quantitative Infrared Thermography, July 7-11, Bordeaux, France, pp. 7-11, (2014).
[11] Da Silva Vicente, S.A., Fujimoto, R.Y., and Padovese, L.R., "Rolling Bearing Fault Diagnostic System using Fuzzy Logic", In 10th IEEE International Conference on Fuzzy Systems, December 2, Melbourne, Australia, Vol. 2, pp. 816-819, (2001).
[12] Safizadeh, M.S., and Latifi, S.K., "Using Multi-sensor Data Fusion for Vibration Fault Diagnosis of Rolling Element Bearings by Accelerometer and Load Cell", Information Fusion, Vol. 18, pp. 1-8, (2018).
[13] Niu, G., and Yang, B.S., "Dempster–shafer Regression for Multi-step-ahead Time-series Prediction Towards Data-driven Machinery Prognosis", Mechanical Systems and Signal Processing, Vol. 23, No. 3, pp. 740-751, (2009).
[14] Yu, M., Wang, D., and Luo, M., "Model-based Prognosis for Hybrid Systems with Mode-dependent Degradation Behaviors", IEEE Transactions on Industrial Electronics, Vol. 61, No. 1, pp. 546-54, (2013).
[15] Liu, Q., Dong, M., Lv, W., Geng, X., and Li, Y., "A Novel Method using Adaptive Hidden Semi-markov Model for Multi-sensor Monitoring Equipment Health Prognosis", Mechanical Systems and Signal Processing, Vol. 64, pp. 217-32, (2015).
[16] Lei, Y., Lin, J., He, Z., and Kong, D., "A Method Based on Multi-sensor Data Fusion for Fault Detection of Planetary Gearboxes", Sensors, Vol. 12, No. 2, pp. 2005-17, (2012).
[17] Gu, Y.K., Zhou, X.Q., Yu, D.P., and Shen, Y.J., "Fault Diagnosis Method of Rolling Bearing using Principal Component Analysis and Support Vector Machine", Journal of Mechanical Science and Technology, Vol. 32, No. 11, pp. 5079-88, (2018).
[18] Li, H., Huang, J., and Ji, S., "Bearing Fault Diagnosis with a Feature Fusion Method Based on an Ensemble Convolutional Neural Network and Deep Neural Network", Sensors, Vol. 19, No. 9, pp. 2034, (2019).
[19] Samanta, B., and Al-Balushi K.R., "Artificial Neural Network Based Fault Diagnostics of Rolling Element Bearings using Time-domain Features", Mechanical Systems and Signal Processing, Vol. 17, No. 2, pp. 317-28, (2003).
[20] Farokhzad, S., Ahmadi, H., Jaefari, A., Abad, M.R., and Kohan, M.R., "Artificial Neural Network Based Classification of Faults in Centrifugal Water Pump", Journal of Vibroengineering, Vol. 14(4), pp. 1734-1744, (2012).
[21] Qiu, H., Lee, J., Lin, J., and Yu, G., "Wavelet Filter-based Weak Signature Detection Method and its Application on Rolling Element Bearing Prognostics", Journal of Sound and Vibration", Vol. 289, No. 4-5, pp. 1066-90, (2006).
[22] Naji, M., Firouzabadi, S.M., and Kahrizi, S., "Empirical Mode Decomposition-based Elimination of Electrocardiogram Artifact from Electromyogram Signals", Iranian Journal of Biomedical Engineering, Vol. 7, No. 1, pp. 13-20, (2013).
[23] Oonincx, P.J., and Hermand, J.-P., "Empirical Mode Decomposition of Ocean Acoustic Data with Constraint on the Frequency Range", In Proceedings of the 7th European Conference on Underwater Acoustics (ECUA), July 5-8, Delft, The Netherlands, (2004).
[24] Antoni, J., "The Spectral Kurtosis: A Useful Tool for Characterizing Non-stationary Signals", Mechanical Systems and Signal Processing", Vol. 20, No. 2, pp. 282-307, (2006).
[25] Lou, X., and Loparo, K.A., "Bearing Fault Diagnosis Based on Wavelet Transform and Fuzzy Inference", Mechanical Systems and Signal Processing", Vol. 18, No. 5, pp. 1077-95, (2004).
[26] Poor Asiabi, H., Poor Asiabi, H., and Saghafian, H., "Application of Multi-layered Perceptron Artificial Neural Networks in Estimating the Phase of Full Carbon Residual Austenite in Austempered Cast Iron", Journal of Advanced Process in Materials Engineering, Vol. 6, No. 2, pp. 71-82, (2012).
[27] Li, R., Ran, C., Zhang, B., Han, L., and Feng, S., "Rolling Bearings Fault Diagnosis Based on Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise, Nonlinear Entropy, and Ensemble SVM", Applied Sciences, Vol. 10, No. 16, pp. 5542, (2020).
[28] Hou, J., Wu, Y., Gong, H., Ahmad, A.S., and Liu, L., "A Novel Intelligent Method for Bearing Fault Diagnosis Based on EEMD Permutation Entropy and GG Clustering", Applied Sciences, Vol. 10, No. 1, pp. 386, (2020).