بررسی عددی جریان آشفته نانوسیال و قطر نانوذرات بر انتقال حرارت در یک کانال موجی شکل

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 کارشناسی ارشد، دانشکده انرژی های تجدید پذیر، کارشناسی ارشد، دانشگاه صنعتی ارومیه

2 نویسنده مسئول، استادیار، دانشکده انرژی های تجدید پذیر، استادیار، دانشگاه صنعتی ارومیه

3 استادیار، دانشکده انرژی های تجدید پذیر، استادیار، دانشگاه صنعتی ارومیه

چکیده

مطالعه عددی انتقال حرارت و هیدرودینامیک جریان آشفته و آرام نانوسیال بصورت تراکم ­ناپذیر، در یک کانال موجی با روش حجم محدود بررسی شده و پارامترهای نسبت قطری، کسرحجمی و قطر نانوذرات در چهار رینولدز تحلیل و نتایج عدد ناسلت، افت فشار و ضریب عملکرد استخراج شده است. اعتبارسنجی، با مطالعات عددی و روابط تحلیلی مقایسه شده و نتایج از همبستگی مناسبی برخوردار بوده است. نتایج نشان داده که استفاده از انحنای سطح انتقال حرارت و افت فشار را بترتیب 78/1 و 1/8 برابر کرده و از طرفی افزایش کسرحجمی نانوسیال انتقال حرارت و  افت فشار را به میزان 1/2 و 3 برابر افزایش داده است. همچنین استفاده از جریان آرام در مقایسه با جریان آشفته در محدود رینولدز 1000 نیز ضریب عملکرد بالاتری داشته است.

کلیدواژه‌ها

موضوعات


[1] Peyghambarzadeh, S.M., Hashemabadi, S.H., Seifi Jamnani, M., and Hoseini, S.M., "Improving the Cooling Performance of Automobile Radiator with Al2O3/water Nanofluid", Applied Thermal Engineering, Vol. 31(10), pp. 1833-1838, (2011).
[2] Ajeel, R.K., Salim, W.-I., and Hasnan, K., "Thermal and Hydraulic Characteristics of Turbulent Nanofluids Flow in Trapezoidal-corrugated Channel: Symmetry and Zigzag Shaped", Case Studies in Thermal Engineering, Vol. 12, pp. 620-635, (2018).
[3] Reddy, M.C.S., and Rao, V.V., "Experimental Investigation of Heat Transfer Coefficient and Friction Factor of Ethylene Glycol Water based TiO2 Nanofluid in Double Pipe Heat Exchanger with and without Helical Coil Inserts", International Communications in Heat and Mass Transfer, Vol. 50, pp. 68-76, (2014).
[4] Naraki, M., Peyghambarzadeh, S.M., Hashemabadi, S.H., and Vermahmoudi, Y., "Parametric Study of Overall Heat Transfer Coefficient of CuO/water Nanofluids in a Car Radiator", International Journal of Thermal Sciences, Vol. 66, pp. 82-90, (2013).
[5] Peyghambarzadeh, S.M., Hashemabadi, S.H., Naraki, M., and Vermahmoudi, Y., "Experimental Study of Overall Heat Transfer Coefficient in the Application of Dilute Nanofluids in the Car Radiator", Applied Thermal Engineering, Vol. 52(1), pp. 8-16, (2013).
[6] Hussein, Adnan M., Bakar, R.A., Kadirgama, K., and Sharma, K.V., "Heat Transfer Enhancement using Nanofluids in an Automotive Cooling System", International Communications in Heat and Mass Transfer, Vol. 53, pp. 195-202, (2014).
[7] Ali, Hafiz Muhammad, Hassan Ali, Hassan Liaquat, Hafiz Talha Bin Maqsood, and Malik Ahmed Nadir, "Experimental Investigation of Convective Heat Transfer Augmentation for Car Radiator Uusing Zno–water Nanofluids", Energy, Vol. 84, pp. 317-324, (2015).
[8] Elias, M.M., Mahbubul, I.M., Saidur, R., Sohel, M.R., Shahrul, I.M., Khaleduzzaman, S.S., and Sadeghipour, S., "Experimental Investigation on the Thermo-physical Properties of Al2O3 Nanoparticles Suspended in Car Radiator Coolant", International Communications in Heat and Mass Transfer, Vol. 54, pp. 48-53, (2014).
[9] Jalayeri Gharahghonlou, A. and Rezazadeh, S., "Numerical Study of the Effect of Longitudinally Finned Pipes on Heat Exchangers for Heat Transfer and Flow Pattern", Journal of Mechanical Engineering, Vol. 51(4), No. 97, pp. 585-592, (2022).
[10] Hussein, Adnan M., Bakar, R.A., Kadirgama, K., and Sharma, K.V., "Heat Transfer Augmentation of a Car Radiator using Nanofluids", Heat and Mass Transfer, Vol. 50(11), pp. 1553-1561, (2014).
[11] M., Ibrahim, Saeed, T., Bani, F.R., Sedeh, S.N., Chu, Y.-M., and Toghraie, D., "Two-phase Analysis of Heat Transfer and Entropy Generation of Water-based Magnetite Nanofluid Flow in a Circular Microtube with Twisted Porous Blocks under a Uniform Magnetic Field", Powder Technology, Vol. 384, pp. 522-541, (2021).
[12] Izadi, A., Siavashi, M., Rasam, H., and Xiong, Q., "MHD Enhanced Nanofluid Mediated Heat Transfer in Porous Metal for CPU Cooling", Applied Thermal Engineering, Vol. 168, pp. 114843, (2020).
[13] Erdem, M., and Varol, Y., "Numerical Investigation of Heat Transfer and Flow Characteristics of MHD Nano-fluid Forced Convection in a Pipe", Journal of Thermal Analysis and Calorimetry, Vol. 139(6), pp. 3897-3909, (2020).
[14] Abdollahi, A., and Shams, M., "Optimization of Shape and Angle of Attack of Winglet Vortex Generator in a Rectangular Channel for Heat Transfer Enhancement", Applied Thermal Engineering, Vol. 81, pp. 376-387, (2015).
[15] Kwak, K., Torii, K., and Nishino, K., "Simultaneous Heat Transfer Enhancement and Pressure Loss Reduction for Finned-tube Bundles with the First or Two Transverse Rows of Built-in Winglets", Experimental Thermal and Fluid Science, Vol. 29(5), pp. 625-632, (2005).
[16] Joardar, A., and Jacobi, A.M., "Heat Transfer Enhancement by Winglet-type Vortex Generator Arrays in Compact Plain-fin-and-tube Heat Exchangers", International Journal of Refrigeration, Vol. 31(1), pp. 87-97, (2008).
[17] Harikrishnan, S., and Tiwari, S., "Effect of Skewness on Flow and Heat Transfer Characteristics of a Wavy Channel", International Journal of Heat and Mass Transfer, Vol. 120, pp. 956-969, (2018).
[18] Mills, Z.G., Warey, A., and Alexeev, A., "Heat Transfer Enhancement and Thermal–hydraulic Performance in Laminar Flows through Asymmetric Wavy Walled Channels", International Journal of Heat and Mass Transfer, Vol. 97, pp. 450-460, (2016).
[19] Bailon-Cuba, J., Leonardi, S., and Castillo, L., "Turbulent Channel Flow with 2D Wedges of Random Height on One Wall", International Journal of Heat and Fluid Flow, Vol. 30(5), pp. 1007-1015, (2009).
[20] Chen, X., Lu, J., and Tryggvason, G., "Finding Closure Terms Directly from Coarse Data for 2D Turbulent Flow", ArXiv Preprint ArXiv, Department of Mechanical Engineering Johns Hopkins University, MD, USA (2021).
[21] Figuérez, J.A., Galán, Á., and González, J., "An Enhanced Treatment of Boundary Conditions for 2D RANS Streamwise Velocity Models in Open Channel Flow", Water, Vol. 13(7), pp. 1001, (2021).
[22] Li, H., Pourquie, M.J.B.M., Ooms, G., and Henkes, R.A.W.M., "Simulation of Turbulent Horizontal Oil-water Core-annular Flow with a Low-reynolds Number K− ϵ Model", International Journal of Multiphase Flow, Vol. 142, pp. 103744, (2021).
[23] Khanafer, K., Vafai, K., and Lightstone, M., "Buoyancy-driven Heat Transfer Enhancement in a Two-dimensional Enclosure Utilizing Nanofluids", International Journal of Heat and Mass transfer, Vol. 46(19), pp. 3639-3653, (2003).
[24] Corcione, M., "Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids", Energy Conversion and Management, Vol. 52(1), pp. 789-793, (2011).
[25] Adibi, O., Rashidi, S., and Esfahani, J.A., "Effects of Perforated Anchors on Heat Transfer Intensification of Turbulence Nanofluid Flow in a Pipe", Journal of Thermal Analysis and Calorimetry, Vol. 141(5), pp. 2047-2059, (2020).
[26] Hinnawi, H., Al-abadi, A., and Al-Huniti, N.S., "Effect of Aspect Ratio on Overall Thermal Performance of Forced Convective Heat Transfer Utilizing Turbulent Nanofluid Flow", Journal of Thermal Science and Engineering Applications, Vol. 13(4), pp. 041014, (2021).
[27] Nakhchi, M., and Esfahani, J., "CFD Approach for Two-phase Cuo Nanofluid Flow through Heat Exchangers Enhanced by Double Perforated Louvered Strip Insert", Powder Technology, Vol. 367, pp. 877-888, (2020).
[28] Khalil, E.E., and Kaood, A., "Numerical Investigation of Thermal-hydraulic Characteristics for Turbulent Nanofluid Flow in Various Conical Double Pipe Heat Exchangers", AIAA Scitech 2021 Forum, 11–15 & 19–21 January, (2021).
[29] Incropera, F.P., DeWitt, D.P., Bergman, T.L., and Lavine, A.S., "Fundamentals of Heat and Mass Transfer", Vol. 6, Wiley, New York, (1996).