بهبود انتقال حرارت در مبدل حرارتی پوسته لوله ای با کمک لوله هایی با سطح مقطع غیر دایروی

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دکتری، دانشکده مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد تهران جنوب، تهران

2 نویسنده مسئول، دانشیار، دانشکده مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد تهران جنوب، تهران

3 دانشیار، دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران

چکیده

یکی از پرکاربرد ترین مبدل حرارتی، مبدل حرارتی پوسته لوله ­ای است. هدف از انجام این تحقیق، افزایش انتقال حرارت و کاهش افت فشار با تغییر در سطح مقطع لوله ­های مبدل حرارتی بود. در این پژوهش، از لوله ­هایی با سطح مقطع­ دایروی، بیضوی با زاویه حمله °0 و بیضوی با زاویه حمله °90 استفاده شد. برای Re بین 3000 تا 15000 مقدار افت فشار و ضریب انتقال حرارت را بررسی شد و سپس مدل ترکیبی شامل دو حالت: حالت اول: لوله های دایروی در مرکز پوسته و لوله ­های بیضوی با زاویه حمله °90 در اطراف پوسته و حالت دوم: لوله های بیضوی با زاویه حمله °90 در مرکز پوسته و لوله های دایروی در اطراف پوسته مورد مطالعه قرار گرفته شد، که نشان دهنده افزایش انتقال حرارت در لوله ­های بیضوی به خصوص لوله ­های بیضوی با زاویه حمله °90 نسبت به دایروی است درحالیکه لوله ­های دایروی کمترین افت فشار را داشتند. استفاده از حالت ترکیبی اول (STHE-CT&ET90°) و حالت دوم (STHE-ET90°& CT) اگر چه موجب افزایش انتقال حرارت به ترتیب برابر با 10% و 3% نسبت به حالت STHE-CT می­شود ولیکن موجب افزایش افت فشار نیز خواهد شد.

کلیدواژه‌ها

موضوعات


[1] Kapale, U.C., and Chand, S., "Modeling for Shell-side Pressure Drop for Liquid Flow in Shell-and-tube Heat Exchanger", International Journal of Heat and Mass Transfer, Vol. 49, No. 3-4, pp. 601-610, (2006).
[2] Thulukkanam, K., "Heat Exchanger Design Handbook", 2rd Edition, CRC Press, London, pp. 125, (2013).
[3] Gay, B., Mackley, N., and Jenkins, J., "Shell-side Heat Transfer in Baffled Cylindrical Shell-and-tube Exchangers—An Electrochemical Mass-transfer Modelling Technique", International Journal of Heat and Mass Transfer, Vol. 19, No. 9, pp. 995-1002, (1976).
[4] Gaddis, E.S., and Gnielinski, V., "Pressure Drop on the Shell Side of Shell-and-tube Heat Exchangers with Segmental Baffles", Chemical Engineering and Processing: Process Intensification, Vol. 36, No. 2, pp. 149-159, (1997).
[5] Zhang, J.-F., Li, B., Huang, W.-J., Lei, Y.-G., He, Y.-L., and Tao, W.-Q., "Experimental Performance Comparison of Shell-side Heat Transfer for Shell-and-tube Heat Exchangers with Middle-overlapped Helical Baffles and Segmental Baffles", Chemical Engineering Science, Vol. 64, No. 8, pp. 1643-1653, (2009).
[6] Ghadimi, A., Saidur, R., and Metselaar, H., "A Review of Nanofluid Stability Properties and Characterization in Stationary Conditions", International Journal of Heat and Mass Transfer, Vol. 54, No. 17-18, pp. 4051-4068 , (2011).
[7] Khanafer, K., and Vafai, K., "A Critical Synthesis of Thermophysical Characteristics of Nanofluids", International Journal of Heat and Mass Transfer, Vol. 54, No. 19-20, pp. 4410-4428, (2011).
[8] Mintsa, H.A., Roy, G., Nguyen, C.T., and Doucet, D., "New Temperature Dependent Thermal Conductivity Data for Water-based Nanofluids", International Journal of Thermal Sciences, Vol. 48, No. 2, pp. 363-371, (2009).
[9] Murshed, S., Leong, K., and Yang, C., "Thermophysical and Electrokinetic Properties of Nanofluids–A Critical Review", Applied Thermal Engineering, Vol. 28, No. 17-18, pp. 2109-2125, (2008).
[10] Yu, W., Xie, H., Wang, X., and Wang, X., "Significant Thermal Conductivity Enhancement for Nanofluids Containing Graphene Nanosheets", Physics Letters A, Vol. 375, No. 10, pp. 1323-1328, (2011).
[11] Eastman, J.A., Choi, S., Li, S., Yu, W., and Thompson, L., "Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-based Nanofluids Containing Copper Nanoparticles", Applied Physics Letters, Vol. 78, No. 6, pp. 718-720, (2001).
[12] Duangthongsuk, W., and Wongwises, S., "Measurement of Temperature-dependent Thermal Conductivity and Viscosity of Tio2-water Nanofluids", Experimental Thermal and Fluid Science, Vol. 33, No. 4, pp. 706-714, (2009).
[13] Ibrahim, T.A., and Gomaa, A., "Thermal Performance Criteria of Elliptic Tube Bundle in Crossflow", International Journal of Thermal Sciences, Vol. 48, No. 11, pp. 2148-2158, (2009).
[14] He, Z., Fang, X., Zhang, Z., and Gao, X., "Numerical Investigation on Performance Comparison of Non-newtonian Fluid Flow in Vertical Heat Exchangers Combined Helical Baffle with Elliptic and Circular Tubes", Applied Thermal Engineering, Vol. 100, pp. 84-97, (2016).
[15] Zaversky, F., Sánchez, M., and Astrain, D., "Object-oriented Modeling for the Transient Response Simulation of Multi-pass Shell-and-tube Heat Exchangers as Applied in Active Indirect Thermal Energy Storage Systems for Concentrated Solar Power", Energy, Vol. 65, pp. 647-664, (2014).
[16] Horvat, A., Leskovar, M., and Mavko, B., "Comparison of Heat Transfer Conditions in Tube Bundle Cross-flow for Different Tube Shapes", International Journal of Heat and Mass Transfer, Vol. 49, No. 5-6, pp. 1027-1038, (2006).
[17] Bonilla, J., de la Calle, A., Rodríguez-García, M.M., Roca, L., and Valenzuela, L., "Study on Shell-and-tube Heat Exchanger Models with Different Degree of Complexity for Process Simulation and Control Design", Applied Thermal Engineering, Vol. 124, pp. 1425-1440, (2017).
[18] Skoglund, T., Årzén, K.-E., and Dejmek, P., "Dynamic Object-oriented Heat Exchanger Models for Simulation of Fluid Property Transitions", International Journal of Heat and Mass Transfer, Vol. 49, No. 13-14, pp. 2291-2303, (2006).
[19] Rocha, L., Saboya, F., and Vargas, J., "A Comparative Study of Elliptical and Circular Sections in One-and Two-row Tubes and Plate Fin Heat Exchangers", International Journal of Heat and Fluid Flow, Vol. 18, No. 2, pp. 247-252, (1997).
[20] Matos, R., Vargas, J., Laursen, T., and Saboya, F., "Optimization Study and Heat Transfer Comparison of Staggered Circular and Elliptic Tubes in Forced Convection", International Journal of Heat and Mass Transfer, Vol. 44, No. 20, pp. 3953-3961, (2001).
[21] Matos, R., Laursen, T., Vargas, J., and Bejan, A., "Three-dimensional Optimization of Staggered Finned Circular and Elliptic Tubes in Forced Convection", International Journal of Thermal Sciences, Vol. 43, No. 5, pp. 477-487, (2004).
[22] Matos, R., Vargas, J., Laursen, T., and Bejan, A., "Optimally Staggered Finned Circular and Elliptic Tubes in Forced Convection", International Journal of Heat and Mass Transfer, Vol. 47, No. 6-7, pp. 1347-1359, (2004).
[23] Bouris, D., Papadakis, G., and Bergeles, G., "Numerical Evaluation of Alternate Tube Configurations for Particle Deposition Rate Reduction in Heat Exchanger Tube Bundles", International Journal of Heat and Fluid Flow, Vol. 22, No. 5, pp. 525-536, (2001).
[24] Nouri-Borujerdi, A., and Lavasani, A.M., "Pressure Loss and Heat Transfer Characterization of a Cam-shaped Cylinder at Different Orientations", Journal of Heat Transfer, Vol. 130, No. 12, pp. 124503, (2008).
[25] Nouri-Borujerdi, A., and Lavasani, A., "Experimental Study of Forced Convection Heat Transfer from a Cam Shaped Tube in Cross Flows", International Journal of Heat and Mass Transfer, Vol. 50, No. 13-14, pp. 2605-2611, (2007).
[26] Moawed, M., "Experimental Study of Forced Convection from Helical Coiled Tubes with Different Parameters", Energy Conversion and Management, Vol. 52, No. 2, pp. 1150-1156, (2011).
[27] Multiphysics, C., "Comsol Multiphysics User's Guide (Version 4.3 A)", COMSOL AB, Stockholm, pp. 39-40, (2012).
[28] Costa, A.L., and Queiroz, E.M., "Design Optimization of Shell-and-tube Heat Exchangers", Applied Thermal Engineering, Vol. 28, No. 14-15, pp. 1798-1805, (2008).
[29] Pepper, D.W., and Heinrich, J.C., "The Finite Element Method: Basic Concepts and Applications", 3rd Edition, Taylor and Francis, Boca Raton, pp. 130-146, (2005).
[30] Zimmerman, W.B., "Multiphysics Modeling with Finite Element Methods", World Scientific Publishing Company, England, pp. 150-176, (2006).
[31] Lun Cen, Z., Gang Zhao, J., and Xian Shen, B., "A Comparative Study of Omega RSM and RNG K–epsilon Model for the Numerical Simulation of a Hydrocyclone", Iranian Journal of Chemistry and Chemical Engineering (IJCCE), Vol. 33, No. 3, pp. 53-61, (2014).
[32] El Maakoul, A., Laknizi, A., Saadeddine, S., El Metouia, M., Zaite, A., Meziane, M., Abdellah, A.B., "Numerical Comparison of Shell-side Performance for Shell and Tube Heat Exchangers with Trefoil-hole, Helical and Segmental Baffles", Applied Thermal Engineering, Vol. 109, pp. 175-185, (2016) .
[33] Azar, R.T., Khalilarya, S., and Jafarmadar, S., "Tube Bundle Replacement for Segmental and Helical Shell and Tube Heat Exchangers: Experimental Test and Economic Analysis", Applied Thermal Engineering, Vol. 62, No. 2, pp. 622-632, (2014).
[34] Kakac, S., Liu, H., and Pramuanjaroenkij, A., "Heat Exchangers: Selection, Rating, and Thermal Design", 3rd edition, CRC press, Florida, pp. 45-78, (2012).