طراحی کنترل کننده شبکه عصبی برای ربات عمودپرواز با استفاده از آموزش دهنده مشتق گیر-تناسبی و بازگشت به عقب

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 کارشناسی ارشد، دانشکده مهندسی مکانیک-دانشگاه آزاد اسلامی واحد خمینی شهر- اصفهان- ایران

2 استادیار، گروه مهندسی مکاترونیک، دانشکده فنی مهندسی- دانشگاه اصفهان- اصفهان- ایران

چکیده

در این مقاله، به طراحی یک کنترل کننده شبکه عصبی هوشمند که بتواند ربات عمودپرواز را در حالت تعادل در میان انواع اغتشاشات قرار دهد، پرداخته‌ شده است. پس از مقایسه دو نوع کنترل کننده مستقل بازگشت به عقب و PID در محیط شبیه‌ سازی اختلاف آن ‌ها به ‌صورت داده‌ هایی در نرم ‌افزار ذخیره شده است. با مشخص کردن داده ‌های ورودی کنترل کننده و داده ‌های هدف و با استفاده از معماری شبکه عصبی پیش ‌خور و نارکس کنترل ‌کننده ‌ای هوشمند طراحی می‌شود و نتایج به ‌دست ‌آمده در نمودارهای تشخیص پایداری متعددی نشان داده می‌شود و نتایج به‌دست ‌آمده نشان می‌دهد که تعادل و کنترل عمودپرواز کاملاً قابل ‌قبول بوده است. در آخر نتایج به‌ دست ‌آمده در مدلی عملی بر روی عمودپرواز واقعی امتحان شده است.

کلیدواژه‌ها

موضوعات


[1] Bolandi, H., Rezaei, M., Mohsenipour, R., Nemati, H., and Smailzadeh, S., “Attitude Control of a Quadrotor with Optimized PID Controller”, Intelligent Control and Automation, Vol. 4, No. 3, pp. 123-129, (2013).
[2] Bouabdallah, S., Murrieri, P., and Siegwart, R., “Design and Control of an Indoor Micro Quadrotor”, Proceedings of the IEEE International Conference of Robotic and Automation, ICRA '04., IEEE, 26 April-1 May, New Orleans, LA, USA, (2004).
 
[3] Tayebi, A., and McGilvary, S., “Attitude Stabilization of a VTOL Quadrotor Aircraft”, IEEE Transactions on Control Systems Technology, IEEE, Vo1. 14(3), pp. 562-571, (2006).
 
[4] Erginer, B., and Altug, E., “Modeling and PD Control of a Quadrotor VTOL Vehicle”, IEEE Intelligent Vehicles Symposium, IEEE, June 13-15, Istanbul, Turkey, (2007).       
 
[5] Sanca, A.S., Alisina, P.J., and Cerqueira, J.F., “Dynamic Modelling of a Quad Rotor Aerial Vehicle with Nonlinear Input”, IEEE Latin American Robotic Symposium, IEEE, October 29-30, Salvador, Brazil, (2008).
 
[6] Yali, Y., Changhong, J., and Haiwei, W., “Backstopping Control of Each Channel for a Quadrotor Aerial Robot”, Computer Mechatronics Control and Electronic Engineering(CMCE), Vol. 3, No. 2, pp. 403-407, (2012).
 
[7] De Vries, E., and Sbbarao, K., “Backstepping Based Nested Multi-loop Control Laws for a Quadrotor”, 11th International Conference on Control Automation Robotics and Vision, IEEE, December 07-10, Singapore, (2010).
 
[8] Morata, F., “Intelligent Fuzzy Controller of Quad Rotor”, IEEE International Conference on Intelligent Systems and Knowledge Engineering, IEEE, November 15-16, Hangzhou, China, (2011).
 
[9] Abeywardena, D.M., Amaratunga, L.A., and Shakoor, S.A., “A Velocity Feedback Fuzzy Logic Controller for Stable Hovering of a Quad Rotor UAV”, International Conference on Industrial and Information Systems (ICIIS), IEEE, December 28-31, Peradeniya, Sri Lanka, (2009).
 
[10] Voos, H., “Nonlinear Control of Quadrotor Micro-UAV using Feedback-linearization”, IEEE International Conference on Mechatronics, IEEE, April 14-17, Malaga, Spain, (2009).
 
[11] Shakev, N.G., Topalov, A.V., Kaynak, O., and Shiev, K.B., “Comparative Results on Stabilization of the Quad-rotor Rotorcraft using Bounded Feedback Controllers”, Journal of Intelligent and Robotic Systems, Vol. 65, pp. 389-408, (2012).
 
[12] Besnard, L., S­­­­htessel, Y.B., and Landrum, B., “Control of a Quadrotor Vehicle using Sliding Mode Disturbance Observer”, IEEE American Control Conference, ACC ’07, IEEE, July 09-13, New York, NY, USA, (2007).
 
[13] Besnard, L., Shtessel, Y.B., and Landrum, B., “Quadrotor Vehicle Control via Sliding Mode Controller Driven by Sliding Mode Disturbance Observer”, Journal of the Franklin Institute, Vol. 349(2), pp. 658-684, (2012).
 
[14] Abeywardena, D.M., and Munasinghe, S.R., “Performance Analysis of Kalman Filter Based Attitude Estimator for a Quad Rotor UAV Ultra-modern”, International Congress on Ultra Modern Telecommunications and Control Systems, IEEE, October 18-20, Moscow, Russia, (2010).
[15] Bouabdallah, S., and Siegwart, R., “Towards Intelligent Miniature Flying Robots”, Part of the Springer Tracts in Advanced Robotics Book Series (STAR), In Proc. of “Field and Service Robotics”, Springer, Berlin, Heidelberg, Vol. 25, pp. 429-440, (2005).
 
[16] Murray, R.M., Li, Z., and Sastry, S.S., “A Mathematical Introduction to Robotic Manipulation”, 1st Edition, CRC Press, Boca Raton, USA, (1994).
 
[17] Leishman, J.G., “Principles of Helicopter Aerodynamics (Cambridge Aerospace Series, Series Number 12)”, 2nd Edition, Cambridge University Press, (2016).
 
[18] Fay, G., “Derivation of the Aerodynamic Forces for the Mesicopter Simulation”, Engineering, Physics, pp. 1-8, (2001).
 
[19] Shephered, J.f., and Tumer, K., “Robust Neuro-control for a Micro Quadrotor”, GECCO '10: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, July, https://doi.org/10.1145/1830483.1830693, pp. 1131–1138, (2010).
 
[20] Efe, M.O., “Neural Network Assisted Computationally Simple PIλDμ Control of a Quadrotor UAV”, IEEE Transactions on Industrial Informatics, IEEE, Vol. 7(2), May, pp. 354-361, (2011).
 
[21] Dunfied, J., Tarbouchi, M., and Labonte, G., “Neural Network Based Control of a Four Rotor Helicopter”, IEEE International Conference on Industrial Technology, IEEE ICIT '04, December 8-10, Hammamet, Tunisia, (2004).
 
[22] Jingya, S., Penghui, F., and Kai-Yuan, C., “Attitude Control of Quadrotor Aircraft via Nonlinear PID”, Journal of Beijing University of Aeronautics and Astronautics, Vol. 03, No. 9, pp. 234-242, (2011).
 
[23] Bouabdallah, S., Noth, A., and Siegwart, R., “PID vs LQ Control Techniques Applied to an Indoor Micro Quadrotor”, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), 28 September-02 October, Sendai, Japan, (2004).
 
[24] Zulu, A., and John, S., “A Review of Control Algorithms for Autonomous Quadrotors”, Open Journal of Applied Sciences, Vol. 4, pp. 547-556, (2014).