طرح کنترل مقاوم تطبیقی مستقل از مدل جدید برای کنترل بالگرد 3-DOF با به کارگیری تخمین تاخیر در زمان

نوع مقاله : مقاله علمی پژوهشی

نویسنده

استادیار، گروه خلبانی، دانشکده مهندسی و پرواز، دانشگاه امام علی (ع)، تهران، ایران

چکیده

در این مقاله یک کنترل کننده مدلغزشی تطبیقی مبتنی بر تخمین تاخیر زمانی برای هلیکوپتر سه درجه‌ آزادی در حضور اغتشاشات و انواع نایقینی و اشباع در عملگر ارائه شده است. در این طرح کنترلی بهره ی سویچینگ مدلغزشی به منظور بهبود تعقیب مسیر مرجع و کاهش چترینگ به صورت تطبیقی تعیین می‌شود. در قانون تطبیق از همسایگی کوچک و دلخواه متغیر لغزش به صورتی که مشتقات بهره‌ی تطبیقی با متغیرهای لغزشی نسبت معکوس دارند، استفاده شده است. در این رویکرد برای پرهیز از بکارگیری مدل از رویکرد تأخیر زمانی استفاده شده است. رویکرد تأخیر زمانی با ایجاد یک سیگنال مناسب، سبب حذف دینامیک سیستم می‌شود. پایداری UBB حلقه بسته ‌ی سیستم نیز نشان داده شده است. اثربخشی رویکرد با شبیه ‌سازی روی بالگرد سه درجه آزادی بررسی شده است. 

کلیدواژه‌ها

موضوعات


[1] Marconi, L., and Naldi, R., "Robust Full Degree-of-freedom Tracking Control of a Helicopter", Automatica, Vol. 43, No. 11, pp. 1909-1920, (2007).
[2] Vilchis, J., "Nonlinear Modelling and Control of Helicopters. Automatica", Vol. 39(9), (2003).
[3] Kadmiry, B., and Driankov, D., "A Fuzzy Gain-scheduler for the Attitude Control of an Unmanned Helicopter", IEEE Transactions on Fuzzy Systems, Vol. 12, No. 4, pp. 502-515, (2004).
[4] Baranyi, P., and Yam, Y., "Case Study of the TP-model Transformation in the Control of a Complex Dynamic Model with Structural Nonlinearity", IEEE Transactions on Industrial Electronics, Vol. 53, No. 3, pp. 895-904, (2006).
[5] Tanaka, K., Ohtake, H., and Wang, H., "A Practical Design Approach to Stabilization of a 3-DOF RC Helicopter", IEEE Transactions on Control Systems Technology, Vol. 12, No. 2, pp. 315-325, (2004).
[6] Zheng, E.H., Xiong, J.J., and Luo, J.L., "Second Order Sliding Mode Control for a Quadrotor UAV", ISA Transactions, Vol. 53(4), pp. 1350-1356, (2014).
[7] Lozano, R., Sanchez, A., Salazar-Cruz, S., Fantoni, I., and Torres, J., "Discrete-time Stabilization of Integrators in Cascade: Real-time Stabilization of a Mini-rotorcraft", In Proceedings of the 45th IEEE Conference on Decision and Control, 13-15 December, San Diego, CA, USA, pp. 6265-6270, (2006).
[8] Salazar-Cruz, S., Kendoul, F., Lozano, R., and Fantoni, I., "Real-time Stabilization of a Small Three-rotor Aircraft", IEEE Transactions on Aerospace and Electronic Systems, Vol. 44, No. 2, pp. 783-794, (2008).
[9] Castillo, P., Lozano, R., and Dzul, A., "Stabilization of a Mini-rotorcraft Having Four Rotors", In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 28 September - 02 October, Sendai, Japan, pp. 2693-2698, (2004).
[10] Andrievsky, B., Peaucelle, D., and Fradkov, A.L., "Adaptive Control of 3DOF Motion for LAAS Helicopter Benchmark: Design and Experiments", In(I or i?) 2007 American Control Conference, 09-13 July, New York, NY, USA, pp. 3312-3317, (2007).
[11] Hamood, M.A., Akmeliawati, R., and Legowo, A., "Multiple-surface Sliding Mode Control for 3DOF Helicopter", In 2011 4th International Conference on Mechatronics (ICOM), 17-19 May, Kuala Lumpur, Malaysia, pp. 1-5, (2011).
[12] Liu, H., Lu, G., and Zhong, Y., "Robust LQR Attitude Control of a 3-DOF Laboratory Helicopter for Aggressive Maneuvers", IEEE Transactions on Industrial Electronics, Vol. 60, No. 10, pp. 4627-4636, (2012).
[13] Kocagil, B.M., Arıcan, A.Ç., Güzey, Ü.M., Özcan, S., and Salamci, M.U., "Controller Designs for Nonlinear Systems with Application to 3 DOF Helicopter Model", Gazi University Journal of Science Part A: Engineering and Innovation, Vol. 4, No. 3, pp. 47-66, (2017).
[14] Kiefer, T., Graichen, K., and Kugi, A., "Trajectory Tracking of a 3DOF Laboratory Helicopter under Input and State Constraints", IEEE Transactions on Control Systems Technology, Vol. 18, No. 4, pp. 944-952, (2009).
[15] Kutay, A., Calise, J., Idan, M., and Hovakimyan, N., "Experimental Results on Adaptive Output Feedback Control using a Laboratory Model Helicopter", IEEE Transactions on Control Systems Technology, Vol. 13, No. 2, pp. 196-202, (2005).
[16] Edwards, C., and Spurgeon, S., "Sliding Mode Control: Theory and Applications", CRC Press, London, England, pp. 150-210, (1998).
[17] Utkin, V.I., and Chang, H.-C., "Sliding Mode Control on Electro-mechanical Systems", Mathematical Problems in Engineering, Vol. 8, pp. 10-15, (2009).
[18] Levant, A., "Sliding Order and Sliding Accuracy in Sliding Mode Control", International Journal of Control, Vol. 58, No. 6, pp. 1247-1263, (1993).
[19] Utkin, V., and Lee, H., "Chattering Problem in Sliding Mode Control Systems", In International Workshop on Variable Structure Systems, 05-07 June, Alghero, Italy, pp. 346-350, (2006).
[20] Huang, Y.-J., Kuo, T.-C., and Chang, S.-H., "Adaptive Sliding-mode Control for Nonlinearsystems with Uncertain Parameters", IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), Vol. 38, No. 2, pp. 534-539, (2008).
[21] Plestan, F., Shtessel, Y., Brégeault, V., and Poznyak, A., "Sliding Mode Control with Gain Adaptation—Application to an Electropneumatic Actuator", Control Engineering Practice, Vol. 21, No. 5, pp. 679-688, (2013).
[22] Zhihong, M., O'day, M., and Yu, X., "A Robust Adaptive Terminal Sliding Mode Control for Rigid Robotic Manipulators", Journal of Intelligent and Robotic systems, Vol. 24, No. 1, pp. 23-41, (1999).
[23] Neila, R., and Tarak, D., "Adaptive Terminal Sliding Mode Control for Rigid Robotic Manipulators", International Journal of Automation and Computing, Vol. 8, No. 2, pp. 215-220, (2011).
[24] Wang, X.,Li, Z., He, Z., and Gao, H., "Adaptive Fast Smooth Second-order Sliding Mode Control for Attitude Tracking of a 3-DOF Helicopter", Electrical Engineering and Systems Science, Vol. 1, No. 3, pp. 1–10, (2020).
[25] Lee, J., Chang, P.H., and Jin, M., "Adaptive Integral Sliding Mode Control with Time-delay Estimation for Robot Manipulators", IEEE Transactions on Industrial Electronics, Vol. 64, No. 8, pp. 6796-6804, (2017).