تحلیل انرژی و اگزرژی و مطالعه ی پارامتریک چرخه ی ترکیبی ماتیانت و رانکین آلی (بدون آلایندگی)

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک دانشگاه تبریز

2 دانشگاه تبریز

چکیده

چرخه‌ی اوکسی‌فیول MATIANT از جمله ی معروف‌ترین سیستم‌های تولید توان بدون آلایندگی می-باشد که قابلیت جداسازی و ذخیره‌ی تمام دی‌اکسیدکربن تولید شده در محفظه احتراق را دارد. در راستای ارایه‌ی سیستم‌های تولید توان با راندمان بالا، در این مطالعه ترکب چرخه‌ی MATIANT و رانکین آلی از دیدگاه انرژی و اگزرژی بررسی شده است که ضمن حفظ ماهیت بی‌آلایندگی چرخه، کارآیی آن را افزایش داده است. راندمان انرژی و اگزرژی چرخه‌ی پیشنهادی به ترتیب 55/51 و 72/45 درصد می‌باشد که در مقایسه با چرخه‌ی MATIANT افزایش قابل قبولی دارد.

کلیدواژه‌ها

موضوعات


[1] Halmann, M. M., and Steinberg, M., “Greenhouse Gas Carbon Dioxide Mitigation”, Science and Technology, New York, Lewis Publishers, (1999).
 
[2] IEA, “CO2 Emissions from Fuel Combustion”, International Energy Agency (IEA), Paris, France, (2013).
 
[3] IRENA, W., “Statistical Issues: Bioenergy and Distributed Renewable Energy”, New York, USA, (2013).
 
[4] Escudero, M., Jiménez, Á., González, C., and López, I., “Quantitative Analysis of Potential Power Production and Environmental Benefits of Biomass Integrated Gasification Combined Cycles in the European Union”, Energy Policy, Vol. 53, pp. 63-75, (2013).
 
[5] Hendriks, C., “Carbon Dioxide Removal from Coal-Fired Power Plants”, Utrecht, the Netherlands: Kluwer Academy Publishers, (1994).
 
[6] Annual Energy Outlook with Projections to 2003, Energy Information Administration (EIA), Online: http://www.eia.doe.gov/oiaf/aeo/index.html, (2007).
 
[7] Parsons, W., “Strategic Analysis of the Global Status of Carbon Capture and Storage, Report”, Global Carbon Capture and Storage Institute (GCCSI), Melbourne, Australia, (2011).
 
[8] Metz, B., Davidson, O., Coninck, H., Loos, M., and Meyer, L., “Special Report on Carbon Dioxide Capture and Storage Prepared by Working Group III of the Intergovernmental Panel on Climate Change”, Cambridge, United Kingdom and New York, (2005).
 
[9] Toftegaard, M. B., Brix, J., Jensen, P. A., Glarborg, P., and Jensen, A. D., “Oxy-fuel Combustion of Solid Fuels”, Progress in Energy and Combustion Science, Vol. 36, pp. 581-625, (2010).
 
[10] Châtel-Pélage, F., Varagani, R., Pranda, P., Perrin, N., Farzan, H., Vecci, S.J., Yongqi, L.U., Chen, S., Rostam-Abadi, M., and Bose, A.C., “Applications of Oxygen for NOx Control and CO2 Capture in Coal-fired Power Plants”, Thermal Science, Vol. 10, pp. 119-142, (2006).
 
[11] Tan, Y., Croiset, E., Douglas, M. A., and Thambimuthu, K. V., “Combustion Characteristics of Coal in a Mixture of Oxygen and Recycled Flue Gas”, Fuel, Vol. 85, pp. 507-512, (2006).
 
[12] Varagani, R. K., Châtel-Pélage, F., Pranda, P., Rostam-Abadi, M., Lu, Y., and Bose, A. C., “Performance Simulation and Cost Assessment of Oxy-combustion Process for CO2 Capture from Coal-fired Power Plants”, the Fourth Annual Conference on Carbon Sequestration, pp. 2-5, Washington, USA, (2005).
 
[13] Okawa, M., Kimura, N., Kiga, T., Takano, S., Arai, K., and Kato, M., “Trial Design for a CO2 Recovery Power Plant by Burning Pulverized Coal in O2-CO2”, Energy Conversion and Management, Vol. 38, pp. 123-127, (1997).
 
 [14] Jericha, H., and Gottlich, E., “Conceptual Design for an Industrial Prototype Graz Cycle Power Plant”, ASME Turbo Expo: Power for Land, Sea, and Air, pp. 413-420, Amsterdam, Netherlands, (2002).
 
[15] Jericha, H., Göttlich, E., Sanz, W., and Heitmeir, F., “Design Optimisation of the Graz Cycle Prototype Plant”, ASME Turbo Expo Collocated with the International Joint Power Generation Conference, pp. 113-121, Georgia, USA, (2003).
 
 [16] Jericha, H., Sanz, W., Woisetschläger, J., and Fesharaki, M., “CO2-Retention Capability of CH4/O2-Fired Graz Cycle”, CIMAC Conference Paper, Interlaken, Switzerland, (1995).
 
[17] Bolland, O., Kvamsdal, H., and Boden, J., “A Comparison of the Efficiencies of the Oxy-Fuel Power Cycles Water-cycle, Graz-cycle and Matiant-cycle, Carbon Dioxide Capture for Storage in Deep Geologic Formations Results from the CO2 Capture Project”, Capture and Separation of Carbon Dioxide from Combustion Sources, Vol. 1, pp. 499-511, (2005).
 
[18] Mathieu, P., and Nihart, R., “Zero-emission MATIANT Cycle”, Journal of Engineering for Gas Turbines and Power, Vol. 121, pp. 116-120, (1999).
 
[19] Mathieu, P., and Nihart, R., “Sensitivity Analysis of the MATIANT Cycle”, Energy Conversion and Management, Vol. 40, pp. 1687-1700, (1999).
 
[20] Soltanieh, M., Mahmoodi Azar, K., and Saber, M., “Development of a Zero Emission Integrated System for Co-production of Electricity and Methanol Through Renewable Hydrogen and CO2 Capture”, International Journal of Greenhouse Gas Control, Vol. 7, pp. 145–152, (2012).
 
[21] Mohammadkhani, F., Shokati, N., Mahmoudi, S.M.S., Yari, M., and Rosen, M.A., “Exergoeconomic Assessment and Parametric Study of a Gas Turbine-modular Helium Reactor Combined with Two Organic Rankine Cycles”, Energy, Vol. 65, pp. 533-43, (2014).
 
[22] Bejan, A., “Advanced Engineering Thermodynamics”, Interscience, New York, (1996).