تحلیل خمش غیر‌خطی پانل‌های استوانه ای کامپوزیتی تقویت شده با نانوتیوب های کربنی هدفمند

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 نویسنده مسئول، عضو هیئت علمی، دانشکده مهندسی مکانیک، دانشگاه آزاد اسلامی واحد تهران

2 استادیار، دانشگاه آزاد اسلامی واحد دماوند، دماوند

3 استادیار، دانشگاه آزاد اسلامی واحد فیروزکوه، فیروزکوه

چکیده

در این مقاله رفتار غیرخطی خمشی پانل استوانه‌ای تقویت‌شده با نانوتیوب های کربنی هدفمند تحت بار گسترده و تغییر درجه حرارت بررسی شده‌است. معادلات حاکم با استفاده از روش انرژی ریتز براساس روابط کرنش- تغییرمکان غیرخطی فون کارمن استخراج شده‌است. تاثیرات نحوه توزیع، میزان درصد حجمی، تغییرات درجه حرارت وهمچنین شرایط مرزی مختلف نانوتیوب‌ها بر پارامترهایی از قبیل تغییرمکان عرضی و منتجه ممان خمشی مرکز پانل استوانه‌ای مورد بررسی قرار گرفته‌است. می‌توان نتیجه گرفت به ازای یک بارگذاری معین، پانل استوانه‌ای تقویت‌شده با نانوتیوب‌های کربنی با توزیع FG-X دارای بیشترین و با توزیع FG-Ʌ دارای کمترین منتجه ممان خمشی میباشد.

کلیدواژه‌ها

موضوعات


[1] Odegard, G.M., Gates, T.S., Nicholson, L.M., and wise, K.E., “Equivalent-continuum Modeling of Nano-structured Materials”, Composites Science and Technology, Vol. 62, pp. 1869-1880, (2002).
 
[2] Zhang, P., Huang, Y., Gao, H., and Hwang, K.C., “Fracture Nucleation in Single-wall Carbon Nanotubes under Tension: Continuum Analysis Incorporating Interatomic Potentials”, J. Appl. Mech, Vol. 69, pp. 454-458, (2002a).
 
[3] Zhang, P., Huang, Y., Geubelle, P.H., Klein, P., and Hwang, K.C., “The Elastic Modulus of Single-wall Carbon Nanotubes: Continuum Analysis Incorporating Interatomic Potentials”, Int. J. Solids Struct, Vol. 39, pp. 3893-3906, (2002b).
 
[4] Tserpes, K., and Papanikos, P., “Finite Element Modeling of Single-walled Carbon Nanotubes”, Composites: Part B, Vol. 36, pp. 468-477, (2005).
 
[5] Changa, T., and Gao, H., “Size-dependent Elastic Properties of a Single-walled Carbon Nanotube via a Molecular Mechanics Model”, Journal of the Mechanics and Physics of Solids, Vol. 51, pp. 1059-1074, (2003).
 
[6] Shen, H., “Nonlinear Bending of Functionally Graded Carbon Nanotube Reinforced Composite Plates in Thermal Environments”, Composite Structures, Vol. 91, No. 1, pp. 9-19, (2009).
 
[7] Shen, H., “Postbuckling of Nanotube-reinforced Composite Cylindrical Shells in Thermal Environments, Part I: Axially-loaded Shells”, Composite Structures, Vol. 93, No. 8, pp. 2096-2108, (2011a).
 
[8] Shen, H., “Postbuckling of Nanotube-reinforced Composite Cylindrical Shells in Thermal Environments, Part II: Pressure-loaded Shells”, Composite Structures, Vol. 93, No. 10, pp. 2496-2503, (2011b).
 
[9] Rafiee, M., Yang, J., and Kitipornchai, S., “Thermal Bifurcation Buckling of Piezoelectric Carbon Nanotube Reinforced Composite Beams”, Computers and Mathematics with Applications, Vol. 66, No. 7, pp. 1147-1160, (2013).
 
[10] Pourasghar, A., and Kamarian, S., “Dynamic Stability Analysis of Functionally Graded Nanocomposite Non-uniform Column Reinforced by Carbon Nanotube”, Journal of Vibration and Control, Vol. 21, No. 13, pp. 2499-2508, (2015).
 
[11] Lei, Z.X., Liew, K.M., and Yu, J.L., “Free Vibration Analysis of Functionally Graded Carbon Nanotube-reinforced Composite Plates using the Element-free kp-Ritz Method in Thermal Environment”, Composite Structures, Vol. 106, No. 1, pp. 128-138, (2013).
 
[12] Zhang, L., Lei, Z.X., Liew, K.M., and Yu, J.L., “Static and Dynamic of Carbon Nanotube Reinforced Functionally Graded Cylindrical Panels”, Composite Structures, Vol. 111, No. 1, pp. 205-212, (2014).
 
[13] Zhang, L., Lei, Z.X., and Liew, K.M.,  “Free Vibration Analysis of Functionally Graded Carbon Nanotube-reinforced Composite Triangular Plates using the FSDT and Element-Free IMLS-Ritz Method”, Composite Structures, Vol. 120, No. 1, pp. 189-199, (2015a).
 
[14] Zhang, L., Lei, Z.X., and Liew, K.M., “Vibration Characteristic of Moderately Thick Functionally Graded Carbon Nanotube Reinforced Composite Skew Plates”, Composite Structures, Vol. 122, No. 1, pp. 172-183, (2015b).
 
[15] Salami, S.J., “Extended High Order Sandwich Panel Theory for Bending Analysis of Sandwich Beams with Carbon Nanotube Reinforced Face Sheets”, Physica E, Vol. 76, pp. 187-197, (2016a).
 
[16] Salami, S.J., “Dynamic Extended High Order Sandwich Panel Theory for Transient Response of Sandwich Beams with Carbon Nanotube Reinforced Face Sheets”, Aerospace Science and Technology, Vol. 56, pp. 56-69, (2018).
 
[17] Salami, S.J., “Low Velocity Impact Response of Sandwich Beams with Soft Cores and Carbon Nanotube Reinforced Face Sheets Based on Extended High Order Sandwich Panel Theory”, Aerospace Science and Technology, Vol. 66, pp. 165-176, (2017).
 
[18] Kiani, Y., “Thermal Post-buckling of Temperature Dependent Sandwich Plates with FG-CNTRC Face Sheets”, J. Thermal Stresses, Vol. 41, pp. 866-882, (2018).
 
[19]  Fu, T., Chen, Z., Yu, H., Wang, Z., and Liu, X., “Mechanical Behavior of Laminated Functionally Graded Carbon Nanotube Reinforced Composite Plates Resting on Elastic Foundations in Thermal Environments”, Journal of Composite Materials, Vol. 53, Issue. 9, pp. 1159-1179, (2018).
 
[20] Brush, D., and Almorth, B., “Buckling of Bars, Plates and Shells”, McGraw Hill, New York, (1975).
 
[21] Mirzaei, M., and Kiani, Y., “Free Vibration of Functionally Graded Carbon Nanotube Reinforced Composite Cylindrical Panels”, Composite Structures, Vol. 142, pp. 45-56., (2016).
 
[22] Song, Y.S., and Youn, J.R., “Modeling of Effective Elastic Properties for Polymer Based Carbon Nanotube Composites”, Polymer, Vol. 47, pp. 1741-1748, (2006).
 
[23] Shen, H., and Xiang, Y., “Nonlinear Bending of Nanotube-reinforced Composite Cylindrical Panels Resting on Elastic Foundations in Thermal Environments”, Engineering Structures, Vol. 80, pp. 163-172, (2014).
 
[24] Mirzaei, M., and Kiani, Y., “Thermal Buckling of Temperature Dependent FG-CNT Reinforced Composite Conical Shells”, Aerospace Science and Technology, Vol. 47, pp. 42-53, (2015).