طراحی ضربه گیر غیرخطی با میراگر مغناطیسی جریان گردابه ای برای ضربه متوالی

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 استادیار، مجتمع دانشگاهی مکانیک، دانشگاه صنعتی مالک اشتر، اصفهان

2 پژوهشگر، مجتمع دانشگاهی مکانیک، دانشگاه صنعتی مالک اشتر، اصفهان

چکیده

در این مقاله، با توجه به محدودیت ‌های موجود در تغییر طول فنر خطی و در مقابل، قابلیت طراحی و ساخت المان میراگر و فنریت غیرخطی مناسب در جاذب ‌های انرژی، طرح یک جرم و فنر غیرخطی با المان میراگر جریان گردابه ­ای مغناطیسی برای کاربرد در تحریک ضربه متوالی ارائه شده است. در این مکانیزم فنریت غیرخطی و المان میراگر به ترتیب با استفاده از یک مکانیزم تلسکوپی و آهنربای نئودیمیومی طراحی شده است. معادله دینامیکی غیرخطی مسئله با استفاده از روش ­های عددی رانگ-کوتا مرتبه 4 و نیومارک بتا حل و صحت سنجی شده است. نتایج نشان می ­دهد با انتخاب طول بازوی تلسکوپی مناسب می ­توان علاوه بر تضمین همگرایی نتایج، انرژی اتلافی را نسبت به مکانیزم خطی تا چند برابر افزایش داد.

کلیدواژه‌ها

موضوعات


[1] D. D. Quinn et al, "Comparing Linear and Essentially Nonlinear Vibration-based Energy Harvesting," 2011.DOI: https://doi.org/10.1115/1.4002782.
 
[2] E. Halvorsen, "Fundamental Issues in Nonlinear Wideband-vibration Energy Harvesting," Physical Review E, Vol. 87, p. 042129, 2013.DOI: https://doi.org/10.1103/PhysRevE.87.042129.
 
[3] B. Zaghari, M. Ghandchi Tehrani, and E. Rustighi. (2014). Mechanical Modelling of a Vibration Energy Harvester with Time-varying Stiffness. Available: http://eprints.soton.ac.uk/id/eprint/366807.
 
[4] C. Liu and X. Jing, "Vibration Energy Harvesting with a Nonlinear Structure," Nonlinear Dynamics, Vol. 84, pp. 2079-2098, 2016.DOI: https://doi.org/10.1007/s11071-016-2630-7.
 
[5] C. Liu and X. Jing, "Nonlinear Vibration Energy Harvesting with Adjustable Stiffness, Damping and Inertia," Nonlinear Dynamics, Vol. 88, pp. 79-95, 2017.DOI: https://doi.org/10.1007/s11071-016-3231-1.
 
[6] M. Amri et al., ''Novel Nonlinear Spring Design for Wideband Vibration Energy Harvesters'', (2011), Available: https://perso.esiee.fr/~bassetp/fichiers/PowerMEMS_2011.pdf.
 
[7] S. Boisseau .,G. Despesse. B., and A. Seddik,“Adjustable Nonlinear Springs to Improve Efficiency of Vibration Energy Harvesters,”, (2012), Available: https://arxiv.org/ftp/arxiv/papers/1207/1207.4559.pdf.
 
[8] R. Ramlan et al., "Potential Benefits of a Non-linear Stiffness in an Energy Harvesting Device," Nonlinear Dynamics, Vol. 59, pp. 545-558, 2010.DOI: https://doi.org/10.1007/s11071-009-9561-5.
 
[9] Z. Wu, C. Levi, and S. F. Estefen, "Wave Energy Harvesting using Nonlinear Stiffness System," Applied Ocean Research, Vol. 74, pp. 102-116, 2018.DOI: https://doi.org/10.1016/j.apor.2018.02.009.
 
[10] A. Nammari et al., "Fabrication and Characterization of Non-resonant Magneto-mechanical Low-frequency Vibration Energy Harvester," Mechanical Systems and Signal Processing, Vol. 102, pp. 298-311, 2018.DOI: https://doi.org/10.1016/j.ymssp.2017.09.036.
 
[11] S. Leadenham and A. Erturk, "M-shaped Asymmetric Nonlinear Oscillator for Broadband Vibration Energy Harvesting: Harmonic Balance Analysis and Experimental Validation," Journal of Sound and Vibration, Vol. 333, pp. 6209-6223, 2014.DOI: https://doi.org/10.1016/j.jsv.2014.06.046.
 
[12] D. Mallick, A. Amann, and S. Roy, "A Nonlinear Stretching Based Electromagnetic Energy Harvester on FR4 for Wideband Operation," Smart Materials and Structures, Vol. 24, p. 015013, 2014.DOI: 10.1088/0964-1726/24/1/015013.
 
[13] D. Mallick, A. Amann, and S. Roy, "Analysis of Nonlinear Spring Arm for Improved Performance of Vibrational Energy Harvesting Devices," Journal of Physics: Conference Series, Vol. 476, p. 012088, 2013.DOI: 10.1088/1742-6596/476/1/012088.
 
[14] D. Miljković. (2009). Review of Active Vibration Control. Available: https://www.bib.irb.hr/croris-redir/.
 
[15] K. Shiba et al., "Active/Passive Vibration Control Systems for Tall Buildings," Smart Materials and Structures, Vol. 7, p. 588, 1998.DOI: 10.1088/0964-1726/7/5/003.
 
[16] G. Aguirre et al., ''Self-tuning Semi-active Tuned-mass Damper for Machine Tool Chatter Suppression'', (2012) , Available: http://centaur-wp.s3.amazonaws.com/theengineer/prod/content/uploads/2015/01/20110500/ISMA2012_490_Self-tuning_semi-active_tuned-mass_damper_for_machine_tool_chatter_suppression.pdf.
 
[17] K. Ikago, K. Saito, and N. Inoue, "Seismic Control of Single‐degree‐of‐freedom Structure using Tuned Viscous Mass Damper," Earthquake Engineering & Structural Dynamics, Vol. 41, pp. 453-474, 2012.DOI: https://doi.org/10.1002/eqe.1138.
 
[18] B. Ebrahimi, M. B. Khamesee, and F. Golnaraghi, "Permanent Magnet Configuration in Design of an Eddy Current Damper," Microsystem Technologies, Vol. 16, pp. 19-24, 2010.DOI: https://doi.org/10.1007/s00542-008-0731-z.
 
[19] B. Ebrahimi, M. B. Khamesee, and F. Golnaraghi, "Eddy Current Damper Feasibility in Automobile Suspension: Modeling, Simulation and Testing," Smart Materials and Structures, Vol. 18, p. 015017, 2008.DOI: 10.1088/0964-1726/18/1/015017.
 
[20] X. Lu et al., "Improving Performance of a Super Tall Building using a New Eddy‐current Tuned Mass Damper," Structural Control and Health Monitoring, Vol. 24, p. e1882, 2017.DOI: https://doi.org/10.1002/stc.1882.
 
[21] G. Xiao-Fan, Y. Yong, and Z. Xiao-Jing, "Analytic Expression of Magnetic Field Distribution of Rectangular Permanent Magnets," Applied Mathematics and Mechanics, Vol. 25, pp. 297-306, 2004.DOI: https://doi.org/10.1007/BF02437333.
 
[22] H. Gavin. (2001). Numerical Integration for Structural Dynamics. Available: http://people.duke.edu/~hpgavin/StructuralDynamics/NumericalIntegration.pdf.
 
[23] S. Y. Chang, "Studies of Newmark Method for Solving Nonlinear Systems:(I) Basic Analysis," Journal of the Chinese Institute of Engineers, Vol. 27, pp. 651-662, 2004.DOI: https://doi.org/10.1080/02533839.2004.9670913.
 
[24] K. Aydin. (2017). A New Implicit Time Integration Method for Nonlinear Structural Dynamics ProblEems. Available: https://www.semanticscholar.org/paper/A-NEW-IMPLICIT-TIME-INTEGRATION-METHOD-FOR-DYNAMICS-Aydin/525cd307c51b5f0637088f16f477107abc52ab17.