بهینه سازی آرایش سلول ها در یک بسته باتری صنعتی لیتیوم-یون 18650 با سامانه مدیریت حرارتی هواخنک

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 کارشناسی ارشد، مهندسی مکانیک، دانشگاه صنعتی شریف، تهران

2 استادیار، مهندسی مکانیک، دانشگاه صنعتی شریف، تهران

چکیده

در این مقاله، چیدمان سلول ‌ها در یک مجموعه باتری لیتیومی با مشخصات صنعتی جهت مدیریت بهینه حرارتی آن توسط یک سامانه هواخنک مورد مطالعه قرار می گیرد. تاثیر فاصله بین سلول ‌ها بر حداکثر و یکنواختی توزیع دما، و کاهش توان مصرفی خنک‌ کاری به عنوان اهداف بهینه‌ سازی به طور مفصل مطالعه می ‌گردد. با کاهش فاصله بین باتری ‌ها، دمای سلول ‌ها از یک طرف، و یکنواختی دما و بازده خنک ‌کاری مجموعه از طرف دیگر کاهش می‌ یابد. همچنین افزایش تعداد سلول ‌ها در ابتدا باعث افزایش راندمان خنک‌ کاری می‌ گردد اما بعد از یک حد معین، منجر به کاهش این راندمان می‌ شود.

کلیدواژه‌ها

موضوعات


[1] Al-Zareer, M., Dincer, I., and Rosen, M.A., “Novel Thermal Management System using Boiling Cooling for High-powered Lithium-ion Battery Packs for Hybrid Electric Vehicles”, Journal of Power Sources, Vol. 363, pp. 291-303, DOI: https://doi.org/10.1016/j.jpowsour.2017.07.067, (2017).
 
[2] Chung, Y., and Kim, M.S., “Thermal Analysis and Pack Level Design of Battery Thermal Management System with Liquid Cooling for Electric Vehicles”, Energy Conversion and Management, Vol. 196, pp. 105-116, DOI: https://doi.org/10.1016/j.enconman.2019.05.083, (2019).
 
[3] Ping, P., Peng, R., Kong, D., Chen, G., and Wen, J., “Investigation on Thermal Management Performance of PCM-fin Structure for Li-ion Battery Module in High-temperature Environment”, Energy Conversion and Management, Vol. 176, pp. 131-146, DOI: https://doi.org/10.1016/j.enconman.2018.09.025, (2018).
 
[4] Zhang, H., Wu, X., Wu, Q., and Xu, S., “Experimental Investigation of Thermal Performance of Large-sized Battery Module using Hybrid PCM and Bottom Liquid Cooling Configuration”, Applied Thermal Engineering, Vol. 159, pp. 1-11, DOI: https://doi.org/10.1016/j.applthermaleng.2019.113968, (2019).
 
[5] Qanbarlo, M., Masih-Tehrani, M., and Molaeimanesh, G.R., “Introduction to Thermal Management Systems of Lithium-ion Batteries in Electric Vehicles”, Mechanical Engineering, Vol. 28, No. 1, pp. 35-41, DOI: https://dorl.net/dor/20.1001.1.16059719.1398.28.1.4.0, (2019). (in Persian)
 
[6] Al-Hallaj, S., Kizilel, R., Lateef, A., Sabbah, R., Farid, M., and Selman, J.R., “Passive Thermal Management using Phase Change Material (PCM) for EV and HEV Li-ion Batteries”, 2005 IEEE Vehicle Power and Propulsion Conference, September 7, Chicago, IL, USA, pp. 376-380, DOI: https://doi.org/10.1109/VPPC.2005.1554585, (2005).
 
[7] Sabbah, R., Kizilel, R., Selman, J.R., and Al-Hallaj, S., “Active (Air-cooled) VS. Passive (Phase Change Material) Thermal Management of High Power Lithium-ion Packs: Limitation of Temperature Rise and Uniformity of Temperature Distribution”, Journal of Power Sources, Vol. 182, No. 2, pp. 630-638, DOI: https://doi.org/10.1016/j.jpowsour.2008.03.082, (2008).
 
[8] Fathabadi, H., “A Novel Design Including Cooling Media for Lithium-ion Batteries Pack Used in Hybrid and Electric Vehicles”, Journal of Power Sources, Vol. 245, pp. 495-500, DOI: https://doi.org/10.1016/j.jpowsour.2013.06.160, (2014).
 
[9] Yang, N., Zhang, X., Li, G., and Hua, D., “Assessment of the Forced Air-cooling Performance for Cylindrical Lithium-ion Battery Packs: A Comparative Analysis between Aligned and Staggered Cell Arrangements”, Applied Thermal Engineering, Vol. 80, pp. 55-65, DOI: https://doi.org/10.1016/j.applthermaleng.2015.01.049, (2015).
 
[10] Kong, D., Peng, R., Ping, P., Du, J., Chen, G., and Wen, J., “A Novel Battery Thermal Management System Coupling with PCM and Optimized Controllable Liquid Cooling for Different Ambient Temperatures”, Energy Conversion and Management, Vol. 204, pp. 1-17, DOI: https://doi.org/10.1016/j.enconman.2019.112280, (2020).
 
[11] Safdari, M., Ahmadi, R., and Sadeghzadeh, S., “Numerical Investigation on PCM Encapsulation Shape Used in the Passive-active Battery Thermal Management”, Energy, Vol. 193, pp. 1-23, DOI: https://doi.org/10.1016/j.energy.2019.116840, (2020).
 
[12] Matthews, K.C., (Reno, NV, US), “Aggregated Battery System”, Tesla, Inc. (Palo Alto, CA, US), US2019/0312251A1, October 10, United States, DOI: https://www.freepatentsonline.com/y2019/0312251.html, (2019).
 
[13] Al-Zareer, M., Dincer, I., and Rosen, M.A., “Heat and Mass Transfer Modeling and Assessment of a New Battery Cooling System”, International Journal of Heat and Mass Transfer, Vol. 126, pp. 765-778, DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.157, (2018).
 
[14] Doyle, M., and Newman, J., “The Use of Mathematical Modeling in the Design of Lithium/Polymer Battery Systems”, Electrochimica Acta, Vol. 40, No. 13-14, pp. 2191-2196, DOI: https://doi.org/10.1016/0013-4686(95)00162-8, (1995).
 
[15] Doyle, M., Newman, J., Gozdz, A.S., Schmutz, C.N., and Tarascon, J.M., “Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells”, Journal of the Electrochemical Society, Vol. 143, No. 6, pp. 1890-1903, DOI: https://doi.org/10.1149/1.1836921, (1996).
 
[16] Chen, F., Huang, R., Wang, C., Yu, X., Liu, H., Wu, Q., Qian, K., and Bhagat, R., “Air and PCM Cooling for Battery Thermal Management Considering Battery Cycle Life”, Applied Thermal Engineering, Vol. 173, DOI: https://doi.org/10.1016/j.applthermaleng.2020.115154, (2020).
 
[17] Saw, L.H., Ye, Y., and Tay, A.A.O., “Electrochemical–thermal Analysis of 18650 Lithium Iron Phosphate Cell”, Energy Conversion and Management, Vol. 75, pp. 162-174, DOI: https://doi.org/10.1016/j.enconman.2013.05.040, (2013).
 
[18] Nie, P., Zhang, S.W., Ran, A., Yang, C., Chen, S., Li, Z., Zhang, X., Deng, W., Liu, T., Kang, F., and Wei, G., “Full-cycle Electrochemical-thermal Coupling Analysis for Commercial Lithium-ion Batteries”, Applied Thermal Engineering, Vol. 184, pp. 1-10, DOI: https://doi.org/10.1016/j.applthermaleng.2020.116258, (2021).
 
[19] Sacchetti, L., and Santarelli, M., “Electrochemical-thermal Analysis of High Capacity Li-ion Pouch Cell for Automotive Applications”, Master Thesis, Department of Mechanical and Aerospace Engineering, Polytechnic University of Turin, Turin, Italy, DOI: http://webthesis.biblio.polito.it/id/eprint/15672, (2020).
 
[20] Cai, L., and White, R.E., “Mathematical Modeling of a Lithium Ion Battery with Thermal Effects in COMSOL Inc. Multiphysics (MP) Software”, Journal of Power Sources, Vol. 196, No. 14, pp. 5985-5989, DOI: https://doi.org/10.1016/j.jpowsour.2011.03.017, (2011).
 
[21] Peng, X., Cui, X., Liao, X., and Garg, A., “A Thermal Investigation and Optimization of an Air-cooled Lithium-ion Battery Pack”, Energies, Vol. 13, No. 11, pp. 1-20, DOI: https://doi.org/10.3390/en13112956, (2020).
 
[22] Akinlabi, A.A.H., and Solyali, D., “Configuration, Design, and Optimization of Air-cooled Battery Thermal Management System for Electric Vehicles: A Review”, Renewable and Sustainable Energy Reviews, Vol. 125, pp. 1-14, DOI: https://doi.org/10.1016/j.rser.2020.109815, (2020).
 
[23] Muddasar, M., “Optimization, Modelling and Analysis of Air-cooled Battery Thermal Management System for Electric Vehicles”, Preprints 2022, 2022010051, DOI: https://doi.org/10.20944/preprints202201.0051.v1, (2022).
 
[24] Ji, C., Wang, B., Wang, S., Pan, S., Wang, D., Qi, P., and Zhang, K., “Optimization on Uniformity of Lithium-ion Cylindrical Battery Module by Different Arrangement Strategy”, Applied Thermal Engineering, Vol. 157, pp. 1-12, DOI: https://doi.org/10.1016/j.applthermaleng.2019.04.093, (2019).
[25] Karniadakis, G., and Sherwin, S., “Spectral/HP Element Methods for Computational Fluid Dynamics”, 2nd Edition, Oxford University Press, New York, USA, DOI: https://doi.org/10.1093/acprof:oso/9780198528692.001.0001, (2005).
 
[26] Panchal, S., Khasow, R., Dincer, I., Agelin-Chaab, M., Fraser, R., and Fowler, M., “Numerical Modeling and Experimental Investigation of a Prismatic Battery Subjected to Water Cooling”, Numerical Heat Transfer, Part A: Applications, Vol. 71, No. 6, pp. 626-637, DOI: https://doi.org/10.1080/10407782.2016.1277938, (2017).