اثر تغییر گام بر فرکانس های یک ملخ گام متغیر بصورت تحلیلی، عددی و تجربی

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشیار، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه جامع امام حسین(علیه السلام)، تهران، ایران

2 استادیار، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه جامع امام حسین(علیه السلام)، تهران، ایران

3 کارشناسی ارشد، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه جامع امام حسین(علیه السلام)، تهران، ایران

چکیده

در این مقاله اثر تغییر گام بر فرکانس‌ های یک ملخ گام متغیر به‌ صورت تحلیلی، عددی و تجربی مورد بررسی قرار گرفته است. ابتدا معادلات ارتعاشات آزاد پره‌ی ملخ با استفاده از روش گالرکین استخراج شد. از اسکنر سه ‌بعدی برای به دست آوردن پروفیل پره و آزمایش تراست استاتیکی جهت تعیین شرایط بارگذاری ملخ استفاده شد. به ‌منظور آزمون مودال در حالت دورانی، شبیه‌ سازی آنالیزمودال به کمک نرم‌ افزار آباکوس انجام و نتایج با آزمون مودال تجربی در حالت استاتیکی صحت‌ سنجی شد. نتایج تجربی مانند روش تحلیلی نشان داد که با افزایش گام، فرکانس طبیعی در مودهای فرد کاهش و در مودهای زوج افزایش می ‌یابد. درنهایت نیز دیاگرام اسپک رسم گردید که هیچ‌ گونه مشکل رزونانسی در شرایط کاری پره ملخ وجود نداشت

کلیدواژه‌ها

موضوعات


[1]        J. C. Houbolt and G. W. Brooks, Differential Equations of Motion for Combined Flapwise Bending, Chordwise Bending, and Torsion of Twisted Nonuniform Rotor Blades. National Advisory Committee for Aeronautics, 1957. https://books.google.com/books?id=Kg0NopZwy4oC.
 
[2]        W. F. White Jr and R. E. Malatino, "A Numerical Method for Determining the Natural Vibration Characteristics of Rotating Nonuniform Cantilever Blades," 1975. [Online]. Available: https://ntrs.nasa.gov/api/citations/19760003417/downloads/19760003417.pdf.
 
[3]        V. Murthy, "Dynamic Characteristics of Rotor Blades-Integrating Matrix Method," AIAA Journal, Vol. 15, No. 4, pp. 595-597, 1977, doi: https://doi.org/10.2514/3.7349.
 
[4]        D. Pnueli, "Natural Bending Frequency Comparable to Rotational Frequency in Rotating Cantilever Beam," 1972, doi: https://doi.org/10.1115/1.3422729.
 
[5]        A. Wright, C. Smith, R. Thresher, and J. Wang, "Vibration Modes of Centrifugally Stiffened Beams," 1982, doi: https://doi.org/10.1115/1.3161966.
 
[6]        S. Naguleswaran, "Lateral Vibration of A Centrifugally Tensioned Uniform Euler-Bernoulli Beam," Journal of Sound and Vibration, Vol. 176, No. 5, pp. 613-624, 1994/10/06/ 1994, doi: https://doi.org/10.1006/jsvi.1994.1402.
 
[7]        Y. Yang, H. Xiang, J. Gao, K. Xu, R. Yang, and N. Ge, "Experimental Study of the Vibration Phenomenon of Compressor Rotor Blade Induced by Inlet Probe Support," Journal of Thermal Science, Vol. 30, pp. 1674-1683, 2021, doi: https://doi.org/10.1007/s11630-021-1447-y.
 
[8]        G. Ferreira Gomes, J. A. Souza Chaves, and F. A. de Almeida, "An Inverse Damage Location Problem Applied to AS-350 Rotor Blades using Bat Optimization Algorithm and Multiaxial Vibration Data," Mechanical Systems and Signal Processing, Vol. 145, p. 106932, 2020/11/01/ 2020, doi: https://doi.org/10.1016/j.ymssp.2020.106932.
 
[9]        K. V. Savchenko, A. P. Zinkovskii, and R. Rzadkowski, "Effect of the Contact Surfaces Orientation in the Shrouded Flanges and Level of Vibration Excitation in the Rotor Blades on Their Vibration Stress State," Strength of Materials, Vol. 52, No. 2, pp. 205-213, 2020/03/01 2020, doi: 10.1007/s11223-020-00167-w.
 
[10]      S. Stapelfeldt and C. Brandstetter, "Non-synchronous Vibration in Axial Compressors: Lock-in Mechanism and Semi-analytical Model," Journal of Sound and Vibration, Vol. 488, p. 115649, 2020, doi: https://doi.org/10.1016/j.jsv.2020.115649.
 
[11]      A. Bazoune, "Relationship between Softening and Stiffening Effects in Terms of Southwell Coefficients," Journal of Sound and Vibration, Vol. 287, No. 4-5, pp. 1027-1030, 2005, doi: https://doi.org/10.1016/j.jsv.2005.02.014.
 
[12]      A. Bazoune, Y. Khulief, and N. Stephen, "Further Results for Modal Characteristics of Rotating Tapered Timoshenko Beams," Journal of Sound and Vibration, Vol. 219, No. 1, pp. 157-174, 1999, doi: https://doi.org/10.1006/jsvi.1998.1906.
[13]      B. Al-Bedoor and M. Hamdan, "Geometrically Non-linear Dynamic Model of a Rotating Flexible Arm," Journal of Sound and Vibration, Vol. 240, No. 1, pp. 59-72, 2001, doi: https://www.sciencedirect.com/science/article/abs/pii/S0022460X00931997#:~:text=https%3A//doi.org/10.1006/jsvi.2000.3199.
 
[14]      S. Lin, "The Instability and Vibration of Rotating Beams with Arbitrary Pretwist and an Elastically Restrained Root," J. Appl. Mech., Vol. 68, No. 6, pp. 844-853, 2001, doi: https://doi.org/10.1115/1.1408615.
 
[15]      S. Y. Lee, S. M. Lin, and C. T. Wu, "Free Vibration of a Rotating Non-uniform Beam with Arbitrary Pretwist, an Elastically Restrained Root and a Tip Mass," Journal of Sound and Vibration, Vol. 273, No. 3, pp. 477-492, 2004, doi: https://doi.org/10.1016/S0022-460X(03)00506-6.
 
[16]      S.-M. Lin, S.-Y. Lee, and W.-R. Wang, "Dynamic Analysis of Rotating Damped Beams with an Elastically Restrained Root," International Journal of Mechanical Sciences, Vol. 46, No. 5, pp. 673-693, 2004, doi: https://doi.org/10.1016/j.ijmecsci.2004.05.011.
 
[17]      S. T. Francis, I. E. Morse, and R. T. Hinkle, Mechanical Vibrations: Theory and Applications. Allyn & Bacon, 1978.
 
[18]      D. Findeisen and K. Popp, Systems Dynamics and Mechanical Vibrations: An Introduction, 5th ed. (Appl. Mech. Rev., no. 3). Prentice Hall, 2002, pp. B49-B50. https://www.researchgate.net/profile/V-T-T-Nguyen/publication/273330566_Basic_Mechanical_Vibrations/links/54fecf170cf2741b69f164f2/Basic-Mechanical-Vibrations.pdf.
 
[19]      S. Rao and R. Gupta, "Finite Element Vibration Analysis of Rotating Timoshenko beams," Journal of Sound and Vibration, Vol. 242, No. 1, pp. 103-124, 2001, doi: https://doi.org/10.1006/jsvi.2000.3362.
 
[20]      H. Moeenfard, B. M. Imani, M. Davoudi, and A. Rahimzadeh, "Dynamic Instability in Tapered Beams under Wind Excitation," Modares Mechanical Engineering, Vol. 15, No. 3, 2015. [Online]. Available: https://mme.modares.ac.ir/article-15-7432-en.pdf.
 
[21]      R. Warikoo and M. Haddara, "Analysis of Propeller Shaft Transverse Vibrations," Marine Structures, Vol. 5, No. 4, pp. 255-279, 1992, doi: https://doi.org/10.1016/0951-8339(92)90014-G.
 
[22]      L. Jun, L. Wanyou, S. Rongying, and H. Hongxing, "Coupled Bending and Torsional Vibration of Nonsymmetrical Axially Loaded Thin-walled Bernoulli–Euler Beams," Mechanics Research Communications, Vol. 31, No. 6, pp. 697-711, 2004, doi: https://doi.org/10.1016/j.mechrescom.2004.04.005.
 
[23]      B. Yardimoglu and D. J. Inman, "Coupled Bending-bending-torsion Vibration of a Rotating Pre-twisted Beam with Aerofoil Cross-section and Flexible Root by Finite Element method," Shock and Vibration, Vol. 11, No. 5-6, pp. 637-646, 2004. [Online]. Available: https://content.iospress.com/articles/shock-and-vibration/sav00265.
 
[24]      G. M. Vörös, "On Coupled Bending–torsional Vibrations of Beams with Initial Loads," Mechanics Research Communications, Vol. 36, No. 5, pp. 603-611, 2009, doi: https://doi.org/10.1016/j.mechrescom.2009.01.006.
 
[25]      R. Vysoký, "Current Capabilities of Modal Analysis of Aircraft Propeller in ANSYS Mechanical Environment," Advances in Military Technology, Vol. 12, No. 1, pp. 33-47, 2017, doi: https://doi.org/10.3849/aimt.01160.
 
[26]      J. Tian, Z. Zhang, Z. Ni, and H. Hua, "Flow-induced Vibration Analysis of Elastic Propellers in a Cyclic Inflow: An Experimental and Numerical Study," Applied Ocean Research, Vol. 65, pp. 47-59, 2017, doi: https://doi.org/10.1016/j.apor.2017.03.014.
 
[27]      S. H. Abbas, J.-K. Jang, D.-H. Kim, and J.-R. Lee, "Underwater Vibration Analysis Method for Rotating Propeller Blades using Laser Doppler Vibrometer," Optics and Lasers in Engineering, Vol. 132, p. 106133, 2020, doi: https://doi.org/10.1016/j.optlaseng.2020.106133.
 
[28]      X. Tong and Y. Chen, "Random Response of Highly Skewed Propeller-shafting System Induced by Inflow Turbulence," Ocean Engineering, Vol. 195, p. 106750, 2020, doi: https://doi.org/10.1016/j.oceaneng.2019.106750.
 
[29]      J. Pirkandi, M. Mahmoodi, and M. Rezvandoost, "An Experimental, Analytical and Numerical Investigation of Static Performance of an Electromotor Driven Propeller with Application in UAVs," Modares Mechanical Engineering, Vol. 15, No. 6, 2015. [Online]. Available: https://mme.modares.ac.ir/article-15-2146-en.pdf.
 
[30]      F. Chen, Y. Chen, and H. Hua, "Vibration Analysis of a Submarine Elastic Propeller-Shaft-hull System using FRF-based Substructuring Method," Journal of Sound and Vibration, Vol. 443, pp. 460-482, 2019, doi: https://doi.org/10.1016/j.jsv.2018.11.053.
 
[31]      S. Bornassi, T. Berruti, C. Firrone, and G. Battiato, "Vibration Parameters Identification of Turbomachinery Rotor Blades under Transient Condition using Blade Tip-Timing Measurements," Measurement, Vol. 183, p. 109861, 2021, doi: https://doi.org/10.1016/j.measurement.2021.109861.
 
[32]      A. Ren, Y. Wang, M. Zhang, and T. Sun, "Deformation and Vibration Analysis of Compressor Rotor Blades Based on Fluid-structure Coupling," Engineering Failure Analysis, Vol. 122, p. 105216, 2021, doi: https://doi.org/10.1016/j.engfailanal.2021.105216.
 
[33]      H. Chen, X. Tong, Z. He, and Y. Chen, "Numerical and Experimental Studies on the Hydrodynamic Damping of a Zero-thrust Propeller," Journal of Fluids and Structures, Vol. 94, p. 102957, 2020, doi: https://doi.org/10.1016/j.jfluidstructs.2020.102957.
 
[34]      V. Murthy, "Dynamic Characteristics of Rotor Blades," Journal of Sound and Vibration, Vol. 49, No. 4, pp. 483-500, 1976, doi: https://doi.org/10.1016/0022-460X(76)90830-0.
 
[35]      R. L. Bielawa, Rotary Wing Structural Dynamics and Aeroelasticity. American Institute of Aeronautics and Astronautics, 2006, https://doi.org/10.2514/4.862373.