اثر انباشتگی نانولوله ها بر رفتار خمشی نانوکامپوزیت های ذوزنقه ای شکل تقویت شده با نانولوله کربنی

نوع مقاله : مقاله علمی پژوهشی

نویسنده

استادیار، گروه مهندسی مکانیک، واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت، ایران

چکیده

از ورق های ذوزنقه ای شکل به عنوان مدل ساده ای برای بال هواپیما یاد می شود. از جنس های متفاوتی می توان این بال ها را تولید کرد که هر کدام مزایای خاص خودش را دارا است. یکی از موادی که در سال های اخیر نظر محققین را به خودش جلب کرده است نانوکامپوزیت ها می باشد که با استحکام بالا و وزن کمی که دارند می توانند گزینه مطلوبی برای ساخت بال هواپیماها باشند. در واقعیت زمانی که نانوکامپوزیت ها تولید می شوند بدون نقص نیستند و عیوبی با خود دارند که سبب کاهش خصوصیات مکانیکی آنها می شود. از جمله این عیب ها می توان به بحث انباشتگی نانولوله ها اشاره کرد. در مقاله حاضر، یک ورق نانوکامپوزیت ذوزنقه ای شکل مدل سازی خواهد شد و رفتار آن در حالت وجود یا عدم وجود انباشتگی نانولوله ها مورد مقایسه قرار خواهد گرفت. داده های استخراج شده از روابط برای خمش ورق های ذوزنقه ای شکل می باشد. برای این منظور از تئوری سه بعدی الاستیسیته به عنوان دقیق ترین تئوری برای مدل سازی ورق های نازک و ضخیم استفاده خواهد شد. با مرور تحقیق های انجام شده تا کنون، این نتیجه حاصل می شود که این نخستین بار است که اثر تجمع نانولوله ها بر روی رفتار خمشی ورق های ذوزنقه ای شکل مطالعه می شود. شایان ذکر است که در حالت های مورد مطالعه، مشاهده شد که تجمع نانولوله ها اثر چشم گیری بر نتایج نهایی ندارد و با تقریب مهندسی قابل صرف نظر کردن می باشد.

کلیدواژه‌ها

موضوعات


 
[1] Tian, W., Yang, Z., Gu, Y., and Wang, X., "Analysis of Nonlinear Aeroelastic Characteristics of a Trapezoidal Wing in Hypersonic Flow", Nonlinear Dynamics, Vol. 89, No. 2, pp. 1205-1232, DOI: https://doi.org/10.1007/s11071-017-3511-4, (2017).
 
[2] Gupta, A.K., and Sharma, S., "Thermally Induced Vibration of Orthotropic Trapezoidal Plate of Linearly Varying Thickness", Journal of Vibration and Control, Vol. 17, No. 10, pp. 1591-1598, DOI: https://doi.org/10.1177/107754631038464, (2011).
 
[3] Zamani, M., Fallah, A., and Aghdam, M.M., "Free Vibration Analysis of Moderately Thick Trapezoidal Symmetrically Laminated Plates with Various Combinations of Boundary Conditions", European Journal of Mechanics-A/Solids, Vol. 36, pp. 204-212, DOI: https://doi.org/10.1016/j.euromechsol.2012.03.004, (2012).
 
[4] Torabi, K., Afshari, H., and Aboutalebi, F.H., "Vibration and Flutter Analyses of Cantilever Trapezoidal Honeycomb Sandwich Plates", Journal of Sandwich Structures and Materials, Vol. 21, No. 8, pp. 2887-2920, DOI: https://doi.org/10.1177/1099636217728746, (2019).
 
[5] Karami, G., Shahpari, S.A., and Malekzadeh, P., "DQM Analysis of Skewed and Trapezoidal Laminated Plates", Composite Structures, Vol. 59, No. 3, pp. 393-402, DOI: https://doi.org/10.1016/S0263-8223(02)00188-5, (2003).
 
[6] Gupta, A.K., and Sharma, S., "Free Transverse Vibration of Orthotropic Thin Trapezoidal Plate of Parabolically Varying Thickness Subjected to Linear Temperature Distribution", Shock and Vibration, Vol. 1 pp. 1-6, DOI: https://doi.org/10.1155/2014/392325, (2014).
 
[7] Liang, D., Wu, Q., Lu, X., and Tahouneh, V., "Vibration Behavior of Trapezoidal Sandwich Plate with Functionally Graded-porous Core and Graphene Platelet-reinforced Layers", Steel and Composite Structures, Vol. 36(1), pp. 47-62, DOI: https://doi.org/10.12989/scs.2020.36.1.047, (2020).
 
[8] Huang, C.H., Hsu, C.H., and Lin, Y.K., "Experimental and Numerical Investigations for the Free Vibration of Cantilever Trapezoidal Plates", Journal of the Chinese Institute of Engineers, Vol. 29(5), pp. 863-872, DOI: https://doi.org/10.1080/02533839.2006.9671184, (2006).
 
[9] Tian, W., Li, Y., Yang, Z., Li, P., and Zhao, T., "Suppression of Nonlinear Aeroelastic Responses for a Cantilevered Trapezoidal Plate in Hypersonic Airflow using an Energy Harvester Enhanced Nonlinear Energy Sink", International Journal of Mechanical Sciences, Vol. 172, Article ID: 105417, DOI: https://doi.org/10.1016/j.ijmecsci.2020.105417, (2020).
[10] Noroozi, M., and Bakhtiari-Nejad, F., "Nonlinear Vibration of a Nanocomposite Laminated Piezoelectric Trapezoidal Actuator in Subsonic Airflow under Combined Electrical and Forcing Excitations", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 235(20), pp. 4784-4817, DOI: https://doi.org/10.1177/0954406220911075, (2020).
 
[11] Noroozi, M., Bakhtiari-Nejad, F., and Dardel, M., "Two-frequency Parametric Excitation and Combination Resonance of a Nanocomposite Laminated Piezoelectric Trapezoidal Plate in Subsonic Airflow", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 235, pp. 4348-4367, DOI: https://doi.org/10.1177/0954406220975431, (2020).
 
[12] Arya, B., and Rajanna, T., "Effect of Trapezoidal Shaped Laminated Composite Plate with and without Cutout on Vibration Characteristics", Materials Today: Proceedings, Vol. 45, pp. 34-40, DOI: https://doi.org/10.1016/j.matpr.2020.09.228, (2021).
 
[13] Nami, M.R., and Janghorban, M., "Stress Analysis of Skew Nanocomposite Plates Based on 3D Elasticity Theory using Differential Quadrature Method", Journal of Solid Mechanics, Vol. 6(2), pp. 158-172, DOI: https://dorl.net/dor/20.1001.1.20083505.2014.6.2.4.0, (2014).
 
[14] Janghorban, M., "Two Different Types of Differential Quadrature Methods for Static Analysis of Microbeams Based on Nonlocal Thermal Elasticity Theory in Thermal Environment", Archive of Applied Mechanics, Vol. 82(5), pp. 669-675, DOI: https://doi.org/10.1007/s00419-011-0582-4, (2012).
 
[15] Nami, M.R., and Janghorban, M., "Free Vibration of Thick Functionally Graded Carbon Nanotube-reinforced Rectangular Composite Plates Based on Three-dimensional Elasticity Theory via Differential Quadrature Method", Advanced Composite Materials, Vol. 24(5), pp. 439-450, DOI: https://doi.org/10.1080/09243046.2014.901472, (2015).
 
[16] Alibeigloo, A., and Emtehani, A., "Static and Free Vibration Analyses of Carbon Nanotube-reinforced Composite Plate using Differential Quadrature Method", Meccanica, Vol. 50(1), pp. 61-76, DOI: https://doi.org/10.1007/s11012-014-0050-7, (2015).
 
[17] Arshid, E., and Khorshidvand, A.R., "Free Vibration Analysis of Saturated Porous FG Circular Plates Integrated with Piezoelectric Actuators via Differential Quadrature Method", Thin-Walled Structures, Vol. 125, pp. 220-233, DOI: https://doi.org/10.1016/j.tws.2018.01.007, (2018).
 
[18] Alibeigloo, A., and Nouri, V., "Static Analysis of Functionally Graded Cylindrical Shell with Piezoelectric Layers using Differential Quadrature Method", Composite Structures, Vol. 92(8), pp. 1775-1785, DOI: https://doi.org/10.1016/j.compstruct.2010.02.004, (2010).
 
[19] Bahrami, K., Afsari, A., Janghorban, M., and Karami, B., "Static Analysis of Monoclinic Plates via a Three-dimensional Model using Differential Quadrature Method", Structural Engineering and Mechanics, Vol. 72(1), pp. 131-139, DOI: https://doi.org/10.12989/sem.2019.72.1.131, (2019). 
 
[20] Chevigny, C., Dalmas, F., Di Cola, E., Gigmes, D., Bertin, D., Boué, F., and Jestin, J., "Polymer-grafted-nanoparticles Nanocomposites: Dispersion, Grafted Chain Conformation, and Rheological Behavior", Macromolecules, Vol. 44(1), pp. 122-133, DOI: https://doi.org/10.1021/ma101332s, (2011).
 
[21] Arefi, M., Mohammadi, M., Tabatabaeian, A., Dimitri, R., and Tornabene, F., "Two-dimensional Thermo-elastic Analysis of FG-CNTRC Cylindrical Pressure Vessels", Steel and Composite Structures, Vol. 27(4), pp. 525-536, DOI: https://doi.org/10.12989/scs.2018.27.4.525, (2018).
 
[22] Ates, B., Koytepe, S., Ulu, A., Gurses, C., and Thakur, V.K., "Chemistry, Structures, and Advanced Applications of Nanocomposites from Biorenewable Resources", Chemical Reviews, Vol. 120(17), pp. 9304-9362, DOI: https://doi.org/10.1021/acs.chemrev.9b00553, (2020).
 
[23] Wu, H., Fahy, W.P., Kim, S., Kim, H., Zhao, N., Pilato, L., Kafi, A., Bateman, S., and Koo, J.H., "Recent Developments in Polymers/Polymer Nanocomposites for Additive Manufacturing", Progress in Materials Science, Vol. 111, Article ID: 100638, DOI: https://doi.org/10.1016/j.pmatsci.2020.100638, (2020).
 
[24] Arefi, M., Mohammadi, M., Amir-Ahmadi, S., and Rabczuk, T., "FSDT Electro-elastic Analysis of FG-CNTRC Cylindrical Three-layered Pressure Vessels with Piezoelectric Face-sheets", Thin-Walled Structures, Vol. 144, pp. 106320, DOI: https://doi.org/10.1016/j.tws.2019.106320, (2019).
 
[25] Wu, N., Du, W., Hu, Q., and Jiang, S.V.Q., "Recent Development in Fabrication of Co Nanostructures and Their Carbon Nanocomposites for Electromagnetic Wave Absorption", Engineered Science, Vol. 13(13), 11-23, (2020).
 
[26] Mohammadi, M., Arefi, M., Dimitri, R., and Tornabene, F., "Higher-order Thermo-elastic Analysis of FG-CNTRC Cylindrical Vessels Surrounded by a Pasternak Foundation", Nanomaterials, Vol. 9(1), pp. 79, DOI: https://doi.org/10.3390/nano9010079, (2019).
 
[27] Huang, X., Zhi, C., Lin, Y., Bao, H., Wu, G., Jiang, P., and Mai, Y.W., "Thermal Conductivity of Graphene-based Polymer Nanocomposites", Materials Science and Engineering: R: Reports, Vol. 142, Article ID: 100577, DOI: https://doi.org/10.1016/j.mser.2020.100577, (2020).
 
[28] Arefi, M., Mohammadi, M., Tabatabaeian, A., and Rabczuk, T., "Free Vibration Analysis of FG-CNTRC Cylindrical Pressure Vessels Resting on Pasternak Foundation with Various Boundary Conditions", Computers, Materials and Continua, Vol.  62(3), pp. 1001-1023, DOI: https://doi.org/10.32604/cmc.2020.08052, (2020).
 
[29] Asadzadeh-Khaneghah, S., and Habibi-Yangjeh, A., "g-C3N4/carbon Dot-based Nanocomposites Serve as Efficacious Photocatalysts for Environmental Purification and Energy Generation: A Review", Journal of Cleaner Production, Article ID: 124319, DOI: https://doi.org/10.1016/j.jclepro.2020.124319, (2020).
 
[30] Mohammadi, M., Arefi, M., and Ahmadi, S.A., "Two-dimensional Electro-elastic Analysis of FG-CNTRC Cylindrical Laminated Pressure Vessels with Piezoelectric Layers Based on Third-order Shear Deformation Theory", Journal of Pressure Vessel Technology, Vol. 142(2), pp. 1-19, DOI: https://doi.org/10.1115/1.4043842, (2020).
[31] Heidari, F., Taheri, K., Sheybani, M., Janghorban, M., and Tounsi, A., "On the Mechanics of Nanocomposites Reinforced by Wavy/Defected/Aggregated Nanotubes", Steel and Composite Structures, Vol. 38(5), pp. 533-545, DOI: https://doi.org/10.12989/scs.2021.38.5.533, (2021).
 
[32] Sheybani, M., Janghorban, M., Heidari, F., and Taheri, K., "Dynamics of Nanocomposite Plates", Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 43(7), pp. 1-17, DOI: https://doi.org/10.1007/s40430-021-03059-5, (2021).
 
[33] Pourasghar, A., and Chen, Z., "Nonlinear Vibration and Modal Analysis of FG Nanocomposite Sandwich Beams Reinforced by Aggregated CNTs", Polymer Engineering and Science, Vol. 59(7), pp. 1362-1370, DOI: https://doi.org/10.1002/pen.25119, (2019).
 
[34] Pourasghar, A., Yas, M.H., and Kamarian, S., "Local Aggregation Effect of CNT on the Vibrational Behavior of Four‐parameter Continuous Grading Nanotube‐reinforced Cylindrical Panels", Polymer Composites, Vol. 34(5), pp. 707-721, DOI: https://doi.org/10.1002/pc.22474, (2013).
 
[35] Prylutskyy, Y.I., Durov, S.S., Ogloblya, O.V., Buzaneva, E.V., and Scharff, P., "Molecular Dynamics Simulation of Mechanical, Vibrational and Electronic Properties of Carbon Nanotubes", Computational Materials Science, Vol. 17(2-4), pp. 352-355, DOI: https://doi.org/10.1016/S0927-0256(00)00051-3, (2000).
 
[36] Ghasemi, A.R., Mohandes, M., Dimitri, R., and Tornabene, F., "Agglomeration Effects on the Vibrations of CNTs/Fiber/Polymer/Metal Hybrid Laminates Cylindrical Shell", Composites Part B: Engineering, Vol. 167, pp. 700-716, DOI: https://doi.org/10.1016/j.compositesb.2019.03.028, (2019).
 
[37] Shi, D.L., Feng, X.Q., Huang, Y.Y., Hwang, K.C., and Gao, H., "The Effect of Nanotube Waviness and Agglomeration on the Elastic Property of Carbon Nanotube-reinforced Composites", Journal of Engineering Materials and Technology, Vol. 126(3), pp. 250-257, DOI: https://doi.org/10.1115/1.1751182, (2004).
 
[38] Saadatpour, M.M., and Azhari, M., "The Galerkin Method for Static Analysis of Simply Supported Plates of General Shape", Computers and Structures, Vol. 69(1), pp. 1-9, DOI: https://doi.org/10.1016/S0045-7949(98)00073-X, (1998).