کنترل امپدانس یک ربات شش ‌درجه آزادی جهت توانبخشی بالاتنه کودکان با کمک از هنر نقاشی

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 کارشناسی ارشد، آزمایشگاه مکاترونیک گروه طراحی کاربردی، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

2 استادیار، آزمایشگاه مکاترونیک گروه طراحی کاربردی، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

3 استاد، آزمایشگاه مکاترونیک گروه طراحی کاربردی، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

چکیده

این پژوهش با استفاده از کنترل امپدانس یک ربات شش درجه آزادی برای کودکان معلول انگیزه ‌ای ایجاد می‌ کند تا در خلال تمرین ‌های خسته‌ کننده فیزیوتراپی به رسم اشکال هندسی در فضای کاری ربات بپردازند. این روش کنترلی به آنها کمک می ‌کند تا در انجام حرکت ‌های مورد نظر به میزان نیاز از ربات کمک بگیرند و همزمان، میزان کمک ربات با بهبود شرایط جسمی‌ شان کاهش پیدا کند. پس از تحلیلی جامع بر سینماتیک این ربات که سه درجه ابتدایی آن دارای عملگر فعال و بقیه بصورت غیرفعال امکان حرکت دارند، به منظور ارزیابی عملکرد کنترلر، سناریوهای مختلفی آزمایش و نتایج بدست آمده با دیگر سیستم ‌های رباتیکی مقایسه شده است. مسیرهای مطلوب با خطای میانگین یک‌ سانتیمتر در فضا رسم شده ‌اند. 

کلیدواژه‌ها

موضوعات


[1]        L. Atanelov, S. Steven, and M. Young, “History of Physical Medicine and Rehabilitation and Its Ethical Dimensions,” AMA J. Ethics, Vol. 17, No. 6, pp. 568–574, Jun. 2015, doi: 10.1001/journalofethics.2015.17.6.mhst1-1506.
 
[2]        M. Hillman, “2 Rehabilitation Robotics from Past to Present – A Historical Perspective,” in Advances in Rehabilitation Robotics, Springer Berlin Heidelberg, pp. 25–44. doi: 10.1007/10946978_2.
 
[3]        M. A. Gull et al., “A 4-DOF Upper Limb Exoskeleton for Physical Assistance: Design, Modeling, Control and Performance Evaluation,” Appl. Sci., Vol. 11, No. 13, p. 5865, Jun. 2021, doi: 10.3390/app11135865.
 
[4]        D. W. Winnicott, “Review: Art Versus Illness,” in The Collected Works of D. W. Winnicott, Oxford University Press, 2016, pp. 265–268. doi: 10.1093/med:psych/9780190271350.003.0049.
 
[5]        G. Chen, W. Sheng, Y. Li, Y. Ou, and Y. Gu, “Humanoid Robot Portrait Drawing Based on Deep Learning Techniques and Efficient Path Planning,” Arab. J. Sci. Eng., Oct. 2021, doi: 10.1007/s13369-021-06245-8.
 
[6]        R. Liu, W. Wan, K. Koyama, and K. Harada, “Robust Robotic 3-D Drawing using Closed-Loop Planning and Online Picked Pens,” IEEE Trans. Robot., pp. 1–20, 2021, doi: 10.1109/TRO.2021.3113996.
 
[7]        E. Akdoğan, M. E. Aktan, A. T. Koru, M. Selçuk Arslan, M. Atlıhan, and B. Kuran, “Hybrid Impedance Control of a Robot Manipulator for Wrist and Forearm Rehabilitation: Performance Analysis and Clinical Results,” Mechatronics, Vol. 49, pp. 77–91, Feb. 2018, doi: 10.1016/j.mechatronics.2017.12.001.
 
[8]        J. Omrani and M. M. Moghaddam, “Nonlinear Time Delay Estimation Based Model Reference Adaptive Impedance Control for an Upper-limb Human-robot Interaction,” Proc. Inst. Mech. Eng. Part H J. Eng. Med., p. 095441192110549, Nov. 2021, doi: 10.1177/09544119211054919.
 
[9]        M. M. Moghadam, H. Shahi, and A. Yousefi-Koma, “An Improvement on Impedance Control Performance of an Exoskeleton Suit in the Presence of Uncertainty,” in 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM), IEEE, Oct. 2015, pp. 412–417. doi: 10.1109/ICRoM.2015.7367820.
 
[10]      G. Xu, A. Song, and H. Li, “Adaptive Impedance Control for Upper-limb Rehabilitation Robot Using Evolutionary Dynamic Recurrent Fuzzy Neural Network,” J. Intell. Robot. Syst., 2011, doi: doi.org/10.1007/s10846-010-9462-3.
 
[11]      X. Li, Y. Liu, and H. Yu, “Iterative Learning Impedance Control for Rehabilitation Robots Driven by Series Elastic Actuators,” Automatica, 2018, doi: doi.org/10.1016/j.automatica.2017.12.031.
 
[12]      M. R. Homaeinezhad and A. Shahhosseini, “High-performance Modeling and Discrete-time Sliding Mode Control of Uncertain Non-commensurate Linear Time Invariant MIMO Fractional Order Dynamic Systems,” Commun. Nonlinear Sci. Numer. Simul., Vol. 84, p. 105200, May 2020, doi: 10.1016/j.cnsns.2020.105200.
 
[13]      M. R. Homaeinezhad and A. Shahhosseini, “Fractional Order Actuation Systems: Theoretical Foundation and Application in Feedback Control of Mechanical Systems,” Appl. Math. Model., Vol. 87, pp. 625–639, Nov. 2020, doi: 10.1016/j.apm.2020.06.030.
 
[14]      M. R. Homaeinezhad and A. Shahhosseini, “Parameter-disturbance-robust Model Predictive Control of Input-saturated MIMO Fractional Systems,” Int. J. Dyn. Control, Vol. 9, No. 3, pp. 1117–1131, Sep. 2021, doi: 10.1007/s40435-020-00714-y.
 
[15]      H. Guang, L. Ji, Y. Shi, and B. J. E. Misgeld, “Dynamic Modeling and Interactive Performance of PARM: A Parallel Upper-limb Rehabilitation Robot Using Impedance Control for Patients after Stroke,” J. Healthc. Eng., Vol. 2018, pp. 1–11, 2018, doi: 10.1155/2018/8647591.
 
[16]      M. R. Homaeinezhad and S. Adineh, “Algorithm for the Torque Sensorless Worm Gearbox Servo Application Based on Kinetic Motion/Friction Realization,” Simulation, Vol. 97, No. 8, pp. 545–562, Aug. 2021, doi: 10.1177/00375497211017981.
 
[17]      M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control, 1st editio., Vol. 26, No. 6. Wiley, 2006. doi: 10.1109/MCS.2006.252815.
 
[18]      I. Fantoni, R. Lozano, and S. Sinha, Non-linear Control for Underactuated Mechanical Systems, Vol. 55, No. 4. in Communications and Control Engineering, Vol. 55. London: Springer London, 2002. doi: 10.1115/1.1483350.
 
[19]      H. Li, W. Liu, K. Wang, K. Kawashima, and E. Magid, “A Cable-pulley Transmission Mechanism for Surgical Robot with Backdrivable Capability,” Robot. Comput. Integr. Manuf., Vol. 49, pp. 328–334, Feb. 2018, doi: 10.1016/j.rcim.2017.08.011.
 
[20]      T. Krabben, B. I. Molier, A. Houwink, J. S. Rietman, J. H. Buurke, and G. B. Prange, “Circle Drawing as Evaluative Movement Task in Stroke Rehabilitation: An Explorative Study,” J. Neuroeng. Rehabil., Vol. 8, No. 1, p. 15, 2011, doi: 10.1186/1743-0003-8-15.
 
[21]      A. Shahhosseini, M.-H. Tien, and K. D’Souza, “Analysis and Evaluation of Piecewise Linear Systems with Coulomb Friction using a Hybrid Symbolic-numeric Computational Method,” in Volume 9: 17th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC), American Society of Mechanical Engineers, Aug. 2021. doi: 10.1115/DETC2021-69430.
 
[22]      A. Shahhosseini, M.-H. Tien, and K. D’Souza, “Efficient Hybrid Symbolic-numeric Computational Method for Piecewise Linear Systems with Coulomb Friction,” SSRN Electron. J., 2021, doi: 10.2139/ssrn.3940122.