بررسی تاثیرات طراحی اکوانرژی در مصرف انرژی ایستگاه های پمپاژ

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشجوی دکترا، گروه مهندسی مکانیک، دانشکده مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران

2 دانشیار، گروه مهندسی مکانیک، دانشکده مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران

چکیده

در این مقاله مدل ریاضی الکتروپمپ های گریز از مرکز مختلف در ایستگاه های پمپاژ شبیه سازی شده، ضمن بررسی تاثیرات استفاده از سیستم های کنترل با استراتژی کنترل سرعت ثابت، سرعت متغیر با استفاده از درایو فرکانس متغیر و ترکیب آن ها، بازدهی متوسط ایستگاه پمپاژ در شرایط مختلف محاسبه شده است. در ایستگاه های با دو الکتروپمپ نقطه کاری تعیین کننده راندمان متوسط می باشد، در ایستگاه های با سه الکتروپمپ استفاده از سیستم کنترل سرعت (CS+VS+VS) به دلیل هزینه اولیه پایین تر و رفتاری مشابه با (VS+VS+CS) در کنار قابلیت اعتماد بالاتر و هزینه تعمیرات و نگهداری پایین تر پیشنهاد می  گردد. به کارگیری سیستم کنترل سرعت متغیر باعث افزایش 10 تا 15 درصدی و سیستم کنترل ترکیبی باعث افزایش 5 تا 10 درصدی بازدهی می گردد.

کلیدواژه‌ها

موضوعات


[1]        A. Mérida García, J. A. Rodríguez Díaz, J. García Morillo, and A. McNabola, "Energy Recovery Potential in Industrial and Municipal Wastewater Networks using Micro-hydropower in Spain," Water, Vol. 13, No. 5, p. 691, 2021, doi: https://doi.org/10.3390/w13050691.
 
[2]        M. C. Morani, A. Carravetta, G. Del Giudice, A. McNabola, and O. Fecarotta, "A Comparison of Energy Recovery by PATs Against Direct Variable Speed Pumping in Water Distribution Networks," Fluids, Vol. 3, No. 2, p. 41, 2018, doi: https://doi.org/10.3390/fluids3020041.
 
[3]        IEA, "IEA (2020), Global Energy Review 2020," 2020. [Online]. Available: https://www.iea.org/reports/global-energy-review-2020.
 
[4]        A. Y. Hoekstra, "Chapter 7 - The Water Footprint of Industry," Assessing and Measuring Environmental Impact and Sustainability, J. J. Klemeš, Ed., Oxford: Butterworth-Heinemann, 2015, pp. 221-254. [Online]. Available:
 
[5]        UNESCO, "The United Nations World Water Development Report 2020," 2020. [Online]. Available: https://unesdoc.unesco.org/ark:/48223/pf0000372985.locale=en.
 
[6]        P. W. Gerbens-Leenes, M. M. Mekonnen, and A. Y. Hoekstra, "The Water Footprint of Poultry, Pork and Beef: A Comparative Study in Different Countries and Production Systems," Water Resources and Industry, Vol. 1-2, pp. 25-36, 2013, doi: https://doi.org/10.1016/j.wri.2013.03.001.
 
[7]        A. Majid et al., "An Analysis of Electricity Consumption Patterns in the Water and Wastewater Sectors in South East England, UK," Water, Vol. 12, No. 1, p. 225, 2020, doi: https://doi.org/10.3390/w12010225.
 
[8]        L. Cimorelli and O. Fecarotta, "Optimal Regulation of Variable Speed Pumps in Sewer Systems," Environmental Sciences Proceedings, Vol. 2, No. 1, p. 58, 2020, doi: https://doi.org/10.3390/environsciproc2020002058.
 
[9]        İ. Eker, M. J. Grimble, and T. Kara, "Operation and Simulation of City of Gaziantep Water Supply System in Turkey," Renewable Energy, Vol. 28, No. 6, pp. 901-916, 2003, doi: https://doi.org/10.1016/S0960-1481(02)00095-2.
[10]      C. Kallesøe, "Fault Detection and Isolation in Centrifugal Pumps," PhD Thesis, Aalborg University, 2005. [Online]. Available: https://vbn.aau.dk/ws/files/316397360/thesis-1a.pdf.
 
[11]      F. Khayatzadeh and J. Ghafouri, "Dynamical Modeling of Frequency Controlled Variable Speed Parallel Multistage Centrifugal Pumps," Archive of Mechanical Engineering, Vol. 62, No. 3, pp. 347-361, 2015, doi: https://doi.org/10.1515/meceng-2015-0020.
 
[12]      I. Boldea, "Linear Electric Machines, Drives, and MAGLEVs Handbook," CRC Press, 2017. [Online]. Available: https://www.taylorfrancis.com/books/mono/10.1201/b13756/linear-electric-machines-drives-maglevs-handbook-ion-boldea.
 
[13]      M. H. Rashid, "Power Electronics Handbook, Devices, Circuits and Applications," 2017. [Online]. Available: http://powerunit-ju.com/wp-content/uploads/2016/11/Book-Power_Electronics_Handbook_3rd_Edition_M_Rashid.pdf.
  
[14]      F. L. Luo, H. Ye, and M. H. Rashid, "Digital Power Electronics and Applications," Elsevier, 2010. [Online]. Available:
 
[15]      P. C. Krause and C. H. Thomas, "Simulation of Symmetrical Induction Machinery," Vol. 84, IEEE Transactions on Power Apparatus and Systems, 1965, pp. 1038-1053. [Online]. Available: https://ieeexplore.ieee.org/document/4766135.
 
[16]      I. V. Nikolenko and A. N. Ryzhakov, "Parallel Operation Mode Optimization of Different-type Centrifugal Pumps of a Water Supply Booster Pumping Station," in 2020 International Conference on Dynamics and Vibroacoustics of Machines (DVM), 2020, pp. 1-6, doi: https://doi.org/10.1109/DVM49764.2020.9243886.
 
[17]      J. A. Rodríguez-Díaz, L. Pérez-Urrestarazu, E. Camacho-Poyato, and P. Montesinos, "The Paradox of Irrigation Scheme Modernization: More Efficient Water Use Linked to Higher Energy Demand," Spanish Journal of Agricultural Research, Vol. 9, No. 4, pp. 1000-1008, 2011, doi: https://doi.org/10.5424/sjar/20110904-492-10.
 
[18]      B. Hanson, C. Weigand, and S. Orloff, "Performance of Electric Irrigation Pumping Plants using Variable Frequency Drives," Journal of Irrigation and Drainage Engineering, Vol. 122, No. 3, pp. 179-182, 1996, doi: https://doi.org/10.1061/(ASCE)0733-9437(1996)122:3(179).
 
[19]      N. Lamaddalena and S. Khila, "Efficiency-driven Pumping Station Regulation in On-demand Irrigation Systems," Irrigation Science, Vol. 31, No. 3, pp. 395-410, 2013, doi: https://doi.org/10.1007/s00271-011-0314-0.
 
[20]      L. Gevorkov, A. Rassõlkin, A. Kallaste, and T. Vaimann, "Simulation Study of Mixed Pressure and Flow Control Systems for Optimal Operation of Centrifugal Pumping Plants," Electrical, Control and Communication Engineering, Vol. 14, No. 1, pp. 89-94, 2018, doi: https://doi.org/10.2478/ecce-2018-0010.
 
[21]      V. Goman, V. Prakht, V. Kazakbaev, and V. Dmitrievskii, "Comparative Study of Energy Consumption and CO2 Emissions of Variable-Speed Electric Drives with Induction and Synchronous Reluctance Motors in Pump Units," Mathematics, Vol. 9, No. 21, p. 2679, 2021, doi: https://doi.org/10.3390/math9212679.
 
[22]      S. Oshurbekov, V. Kazakbaev, V. Prakht, V. Dmitrievskii, and L. Gevorkov, "Energy Consumption Comparison of a Single Variable-speed Pump and a System of Two Pumps: Variable-speed and Fixed-speed," Applied Sciences, Vol. 10, No. 24, p. 8820, 2020, doi: https://doi.org/10.3390/app10248820.
 
[23]      J. Ghafouri, Khayatzadeh, F., and Khayatzadeh A., "Dynamic Modeling of Variable Speed Centrifugal Pump Utilizing MATLAB / SIMULINK," IJSEI, 2012. [Online]. Available: http://ijsei.com/papers/ijsei-10512-09.
 
[24]      L. Gevorkov, J. L. Domínguez-García, and L. T. Romero, "Review on Solar Photovoltaic-powered Pumping Systems," Energies, Vol. 16, No. 1, p. 94, 2023, doi: https://doi.org/10.3390/en16010094.
 
[25]      ISO 17769, Liquid Pumps and Installation - General Terms, Definitions, Quantities, Letter Symbols and Unit, ISO, 2012. [Online]. Available:
 
[26]      PUMPIRAN PUMPS, WKL Series, Multistage Centrifugal Pumps Catalog, 2012. [Online]. Available: https://pumpiran.co/?p=3226.
 
[27]      T. Hieninger, F. Goppelt, and R. Schmidt-Vollus, "On-line Self-tuning for Centrifugal Pumps Driven in Parallel Mode using Dynamic Optimization," Presented at the 18th International Conference on Mechatronics - Mechatronika (ME), 2018. [Online]. Available: https://ieeexplore.ieee.org/document/8624814.
 
[28]      M. R. Nahian, Zaman, M.S., Nurulislam, M., and Rokunuzzaman, M., "Development of a Pressure Sensing Module and Flow Control System for A Prototype Pump Test Bed," Indonesian Journal of Electronics and Instrumentation Systems, Vol. 8, pp. 155-166, 2018, doi: https://doi.org/10.22146/ijeis.33855.
 
[29]      L. Gevorkov, V. Šmídl, and M. Sirový, "Model of Hybrid Speed and Throttle Control for Centrifugal Pump System Enhancement," in IEEE 28th International Symposium on Industrial Electronics (ISIE), 2019, pp. 563-568, doi: https://doi.org/10.1109/ISIE.2019.8781218.
 
[30]      K. Morgan, "The Carbon Reduction Opportunity of Moving to the Cloud for APAC," AWS Institute, S&P Global Market Intelligence, 2021. [Online]. Available: https://d1.awsstatic.com/institute/The%20carbon%20opportunity%20of%20moving%20to%20the%20cloud%20for%20APAC.pdf.