تحلیل ارتعاشات آزاد تیرهای کامپوزیتی پیچیده شده تقویت شده با صفحات گرافن

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه شهرکرد، شهرکرد

2 دانشیار، دانشکده مهندسی مکانیک، دانشگاه شهرکرد، شهرکرد

چکیده

در این مقاله، به بررسی ارتعاشات آزاد یک تیر کامپوزیتی پرداخته شده که دارای پیچش اولیه است به نحوی که یک انتهای تیر بدون پیچش و انتهای دیگر تیر دارای حداکثر زاویه پیچش می ­باشد. تیر در این تحقیق لایه ­ای بوده به نحوی که هر لایه با مقداری از صفحات گرافن تقویت شده است. لایه ­های مختلف مقادیر مختلفی تقویت کننده دارند که موجب ایجاد یک توزیع هدفمند خواهد شد. مدول الاستیسیته کامپوزیت با قانون هالپین-سای و دو خاصیت چگالی و ضریب پوآسون به کمک قانون ساده مخلوط ­ها محاسبه شده ­اند. برای مدلسازی تیر از تئوری تیر تیموشنکو استفاده شده است. توابع شکل به کار رفته در روش ریتز از نوع توابع چبیشف انتخاب شده است. با استفاده از روش ریتز و توابع چبیشف فرم ماترسی معادلات حاکم بر ارتعاشات آزاد حاصل شده و از حل این معادلات به شکل یک مساله مقدار ویژه، فرکانس ­های طبیعی تیر پیچیده شده به عنوان نتایج حاصل از این تحقیق به دست آمده­اند. این نتایج در ابتدا با مراجع دیگر به شکل ­های مختلف صحت سنجی شده است. سپس تاثیر پارامترهای مختلف همچون تعداد لایه ‌های کامپوزیت، شرایط مرزی، زاویه پیچش، نرخ زاویه پیچش، کسر حجمی گرافن و نحوه چیدمان آنها بر روی ارتعاشات آزاد تیر مورد نظر بررسی شده است. نتایج این تحقیق به خوبی نشان می­ دهد که بالا رفتن کسر حجمی گرافن باعث بالاتر رفتن فرکانس ­های طبیعی تیر می ­شود به طوری که بالاترین فرکانس­ ها مربوط به الگوی توزیع FG-X بوده و کمترین فرکانس ­های طبیعی در حالت FG-O مشاهده می­ شود. اثر زاویه پیچش نیز بر روی فرکانس طبیعی تیر به شماره فرکانس بستگی دارد به طوری که با بالا رفتن نرخ زاویه پیچش، فرکانس­ های تیر ممکن است کاهش یا افزایش پیدا کنند.

کلیدواژه‌ها

موضوعات


[1] Yang, J., Wu, H., and Kitipornchai, S., "Buckling and Postbuckling of Functionally Graded Multilayer Graphene Platelet-reinforced Composite Beams", Composite Structures, Vol. 161, pp. 11-118, DOI: https://doi.org/10.1016/j.compstruct.2016.11.048, (2017).
 
[2] Wu, H., Yang, J., and Kitipornchai, S., "Dynamic Instability of Functionally Graded Multilayer Graphene Nanocomposite Beams in Thermal Environment", Composite Structures, Vol. 162, pp. 244-254, DOI: https://doi.org/10.1016/j.compstruct.2016.12.001, (2017).
 
[3] Song, M., Kitipornchai, S., and Yang, J., "Free and Forced Vibrations of Functionally Graded Polymer Composite Plates Reinforced with Graphene Nanoplatelets", Composite Structures, Vol. 159, pp. 579-588, DOI: https://doi.org/10.1016/j.compstruct.2016.09.070, (2017).
 
[4] Kitipornchai, S., Chen, D., and Yang, J., "Free Vibration and Elastic Buckling of Functionally Graded Porous Beams Reinforced by Graphene Platelets", Materials and Design, Vol. 116, pp. 656-665, DOI: https://doi.org/10.1016/j.matdes.2016.12.061, (2017).
 
[5] Reddy, R.M.R., Karunasena, W., and Lokuge, W., "Free Vibration of Functionally Graded-GPL Reinforced Composite Plates with Different Boundary Conditions", Aerospace Science and Technology, Vol. 78, pp. 147-156, DOI: https://doi.org/10.1016/j.ast.2018.04.019, (2018).
 
[6] Arefi, M., Bidgoli, E.M.R., Dimitri, R., and Tornabene, F., "Free Vibrations of Functionally Graded Polymer Composite Nanoplates Reinforced with Graphene Nanoplatelets", Aerospace Science and Technology, Vol. 81, pp. 108-117, DOI: https://doi.org/10.1016/j.ast.2018.07.036, (2018).
 
[7] Feng, C., Kitipornchai, S., and Yang, J., "Nonlinear Free Vibration of Functionally Graded Polymer Composite Beams Reinforced with Graphene Nanoplatelets (GPLs)", Engineering Structures, Vol. 140, pp. 110-119, DOI: https://doi.org/10.1016/j.engstruct.2017.02.052, (2017).
 
[8] Li, Q., Wu, D., Chen, X., Liu, L., Yu, Y., and Gao, W., "Nonlinear Vibration and Dynamic Buckling Analyses of Sandwich Functionally Graded Porous Plate with Graphene Platelet Reinforcement Resting on Winkler–Pasternak Elastic Foundation", International Journal of Mechanical Sciences, Vol. 148, pp. 596-610, DOI: https://doi.org/10.1016/j.ijmecsci.2018.09.020, (2018).
 
[9] Chen, D., Yang, J., and Kitipornchai, S., "Nonlinear Vibration and Postbuckling of Functionally Graded Graphene Reinforced Porous Nanocomposite Beams", Composites Science and Technology, Vol. 142, pp. 235-245, DOI: https://doi.org/10.1016/j.compscitech.2017.02.008, (2017).
 
[10] Wu, H., Yang, J., and Kitipornchai, S., "Parametric Instability of Thermo-mechanically Loaded Functionally Graded Graphene Reinforced Nanocomposite Plates", International Journal of Mechanical Sciences, Vol. 135, pp. 431-440, DOI: https://doi.org/10.1016/j.ijmecsci.2017.11.039, (2018).
 
[11] Sahmani, S., and Aghdam, M.M., "Small Scale Effects on the Large Amplitude Nonlinear Vibrations of Multilayer Functionally Graded Composite Nanobeams Reinforced with Graphene-nanoplatelets", International Journal of Nanoscience and Nanotechnology, Vol. 14, pp. 207-227, (2018).
 
[12] Guo, H., Cao, Sh., Yang, T., and Chen, Y., "Vibration of Laminated Composite Quadrilateral Plates Reinforced with Graphene Nanoplatelets using the Element-free IMLS-Ritz Method", International Journal of Mechanical Sciences, Vol. 142-143, pp. 610-621, DOI : https://doi.org/10.1016/j.ijmecsci.2018.05.029, (2018).
 
[13] Qaderi, S., and Ebrahimi, F., "Vibration Analysis of Polymer Composite Plates Reinforced with Graphene Platelets Resting on Two-parameter Viscoelastic Foundation", Engineering with Computers, Vol. 33, pp. 195-208, DOI: https://doi.org/10.1007/s00366-020-01066-z, (2020).
 
[14] Pashmforoush, F., "Statistical Analysis on Free Vibration Behavior of Functionally Graded Nanocomposite Plates Reinforced by Graphene Platelets", Composite Structures, Vol. 213, pp. 14-24, DOI: https://doi.org/10.1016/j.compstruct.2019.01.066, (2019).
 
[15] Barati, M.R., and Shahverdi, H., "Finite Element Forced Vibration Analysis of Refined Shear Deformable Nanocomposite Graphene Platelet‑reinforced Beams", Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 42, pp. 33, DOI: https://doi.org/10.1007/s40430-019-2118-8, (2020).
 
[16] Shen, H-Sh., Lin, F., and Xiang, Y., "Nonlinear Vibration of Functionally Graded Graphene-reinforced Composite Laminated Beams Resting on Elastic Foundations in Thermal Environments", Nonlinear Dynamics, Vol. 90, pp. 899–914, DOI: https://doi.org/10.1007/s11071-017-3701-0, (2017).
 
[17] Yang, J., Chen, D., and Kitipornchai, S., "Buckling and Free Vibration Analyses of Functionally Graded Graphene Reinforced Porous Nanocomposite Plates Based on Chebyshev-Ritz Method", Composite Structures, Vol. 193, pp. 281-294, DOI: https://doi.org/10.1016/j.compstruct.2018.03.090, (2018).
 
[18] Banerjee, J.R., "Free Vibration of a Twisted Beam using the Dynamic Stiffness Method", International Journal of Solids and Structures, Vol. 38, pp. 6703-6722, DOI: https://doi.org/10.1016/S0020-7683(01)00119-6, (2001).
 
[19] Banerjee, J.R., "Development of an Exact Dynamic Stiffness Matrix for Free Vibration Analysis of a Twisted Timoshenko Beam", Journal of Sound and Vibration, Vol. 270, pp. 379–401, DOI: https://doi.org/10.1016/S0022-460X(03)00633-3, (2004).
 
[20] Shenas, A.G., Malekzadeh, P., and Ziaee, S., "Vibration Analysis of Pre-twisted Functionally Graded Carbon Nanotube Reinforced Composite Beams in Thermal Environment", Composite Structures, Vol. 162, 325–340, DOI: https://doi.org/10.1016/j.compstruct.2016.12.009, (2017).
 
[21] Leung, A.Y.T., "Dynamics and Buckling of Thin Pre-twisted Beams under Axial Load and Torque", International Journal of Structural Stability and Dynamics, Vol. 10, pp. 957–981, DOI: https://doi.org/10.1142/S0219455410003956, (2010).  
 
[22] Chen, W.R., Hsin, S.W., Chu, T.H., "Vibration Analysis of Twisted Timoshenko Beams with Internal Kelvin-Voigt Damping", Procedia Engineering, Vol. 11, pp. 541-572, DOI: https://doi.org/10.1016/j.proeng.2013.12.053, (2013).
 
[23] Zeng, J., Zhao, C., Ma, H., Wen, B., "Dynamic Modeling and Coupling Characteristics of Rotating Inclined Beams with Twisted-shape Sections", Frontiers of Mechanical Engineering, Vol. 15(3), pp. 374-389, DOI: https://doi.org/10.1007/s11465-019-0580-8, (2020).
 
[24] Ondra, V., Titurus, B., "Free Vibration Analysis of a Rotating Pre-twisted Beam Subjected to Tendon-induced Axial Loading", Journal of Sound and Vibration, Vol. 461(24), DOI: https://doi.org/10.1016/j.jsv.2019.114912, (2019).
 
[25] Rosen, A., Loewy, R.G., and Mathew, B., "Use of Twisted Principal Coordinates and Non-physical Coordinates in Blade Analysis", Vertica. 11, pp. 541-572, (1987).