طراحی و تحلیل انرژی، اگزرژی و اقتصادی سیستم ذخیره انرژی هوای فشرده فوق سرد (SCAES)

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشجو کارشناسی ارشد، دانشکده مهندسی، دانشگاه فردوسی مشهد، ایران

2 استاد، دانشکده مهندسی، گروه مکانیک، دانشگاه فردوسی مشهد، ایران

3 مربی، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه زابل، ایران

چکیده

‌در این پژوهش یک واحد CAES فوق‌ سرد به منظور تولید برق و انرژی سرمایشی در زمان اوج مصرف مورد بررسی قرار گرفته است و راندمان انرژی و دوره بازگشت سرمایه در شرایط کارکردی متفاوت محاسبه شده ‌است. برای این ‌منظور یک کد کامپیوتری در نرم ‌افزار متلب توسعه داده شده که معادلات مربوطه را به روش تکرار با گام زمانی مناسب حل نموده است. نتایج نشان داد که با افزایش مراحل تراکم و انبساط، راندمان انرژی بهبود می ­یابد. همچنین با افزایش مراحل تراکم دوره بازگشت سرمایه سیستم کاهش یافته ولی با افزایش مراحل انبساط دوره بازگشت سرمایه سیستم زیاد می ‌شود. مشخص شد زمانی که دمای مخزن با دمای محیط برابر است، سیستم بهترین کارایی را دارد. در بررسی یک نمونه حقیقی که توان خروجی 900 کیلووات را طی مدت زمان 4 ساعت تامین می کند، دوره بازگشت سرمایه برای متوسط قیمت برق مصرفی 15 سنت به ازای هر کیلووات‌ساعت، بدون در نظر گرفتن نرخ تورم 8 سال پیش­ بینی شد اما بر اساس روش ارزش خالص فعلی پس از گذشت 11 سال، سیستم پیشنهادی به سوددهی می‎ رسد.

کلیدواژه‌ها

موضوعات


[1] H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, and Y. Ding, "Progress in Electrical Energy Storage System: A Critical Review," Progress in Natural Science, Vol. 19, No. 3, pp. 291-312, 2009, doi: https://doi.org/10.1016/j.pnsc.2008.07.014.
[2] Y. Li, X. Wang, D. Li, and Y. Ding, "A Trigeneration System based on Compressed Air and Thermal Energy Storage," Applied Energy, Vol. 99, pp. 316-323, 2012, doi: https://doi.org/10.1016/j.apenergy.2012.04.048.
 
[3] D. Zafirakis and J. Kaldellis, "Autonomous Dual-mode CAES Systems for Maximum Wind Energy Contribution in Remote Island Networks," Energy Conversion and Management, Vol. 51, No. 11, pp. 2150-2161, 2010, doi: https://doi.org/10.1016/j.enconman.2010.03.008.
 
[4] F. R. Kalhammer and T. R. Schneider, "Energy Storage," Annual Review of Energy, Vol. 1, No. 1, pp. 311-343, 1976.
 
[5] M. Budt, D. Wolf, R. Span, and J. Yan, "A Review on Compressed Air Energy Storage: Basic Principles, Past Milestones and Recent Developments," Applied Energy, Vol. 170, pp. 250-268, 2016, doi: https://doi.org/10.1016/j.apenergy.2016.02.108.
 
[6] X. Luo and J. Wang, "Overview of Current Development on Compressed Air Energy Storage," School of Engineering, University of Warwick, 2013, doi: https://doi.org/10.1016/j.egypro.2014.12.423.
 
[7] S. B. Mousavi, P. Ahmadi, A. Pourahmadiyan, and P. Hanafizadeh, "A Comprehensive Techno-economic Assessment of a Novel Compressed Air Energy Storage (CAES) Integrated with Geothermal and Solar Energy," Sustainable Energy Technologies and Assessments, Vol. 47, p. 101418, 2021, doi: https://doi.org/10.1016/j.seta.2021.101418.
 
[8] A. R. Razmi, H. H. Afshar, A. Pourahmadiyan, and M. Torabi, "Investigation of a Combined Heat and Power (CHP) System based on Biomass and Compressed Air Energy Storage (CAES)," Sustainable Energy Technologies and Assessments, Vol. 46, p. 101253, 2021, doi: https://doi.org/10.1016/j.seta.2021.101253.
 
[9] A. R. Razmi, M. Soltani, A. Ardehali, K. Gharali, M. Dusseault, and J. Nathwani, "Design, Thermodynamic, and Wind Assessments of a Compressed Air Energy Storage (CAES) Integrated with Two Adjacent Wind Farms: A Case Study at Abhar and Kahak Sites, Iran," Energy, Vol. 221, p. 119902, 2021, doi: https://doi.org/10.1016/j.energy.2021.119902.
 
[10] E. Assareh and A. Ghafouri, "An Innovative Compressed Air Energy Storage (CAES) using Hydrogen Energy Integrated with Geothermal and Solar Energy Technologies: A Comprehensive Techno-economic Analysis-different Climate Areas-using Artificial Intelligent (AI)," International Journal of Hydrogen Energy, Vol. 48, No. 34, pp. 12600-12621, 2023, doi: https://doi.org/10.1016/j.ijhydene.2022.11.233.
 
[11] J. Zhang, S. Zhou, S. Li, W. Song, and Z. Feng, "Performance Analysis of Diabatic Compressed Air Energy Storage (D-CAES) System," Energy Procedia, Vol. 158, pp. 4369-4374, 2019, doi: https://doi.org/10.1016/j.egypro.2019.01.782.
 
[12] X. Luo, J. Wang, M. Dooner, J. Clarke, and C. Krupke, "Overview of Current Development in Compressed Air Energy Storage Technology," Energy Procedia, Vol. 62, pp. 603-611, 2014, doi: https://doi.org/10.1016/j.egypro.2014.12.423.
 
[13] L. Chen, Y. Wang, M. Xie, K. Ye, and S. Mohtaram, "Energy and Exergy Analysis of Two Modified Adiabatic Compressed Air Energy Storage (A-CAES) System for Cogeneration of Power and Cooling on the base of Volatile Fluid," Journal of Energy Storage, Vol. 42, p. 103009, 2021, doi: https://doi.org/10.1016/j.est.2021.103009.
 
[14] A. L. Facci, D. Sánchez, E. Jannelli, and S. Ubertini, "Trigenerative Micro Compressed Air Energy Storage: Concept and Thermodynamic Assessment," Applied Energy, Vol. 158, pp. 243-254, 2015, doi: https://doi.org/10.1016/j.apenergy.2015.08.026.
 
[15] G. Venkataramani, P. Vijayamithran, Y. Li, Y. Ding, H. Chen, and V. Ramalingam, "Thermodynamic Analysis on Compressed Air Energy Storage Augmenting Power/Polygeneration for Roundtrip Efficiency Enhancement," Energy, Vol. 180, pp. 107-120, 2019, doi: https://doi.org/10.1016/j.energy.2019.05.038.
 
[16] A. S. Alsagri, A. Arabkoohsar, and A. A. Alrobaian, "Combination of Subcooled Compressed Air Energy Storage System with an Organic Rankine Cycle for Better Electricity Efficiency, a Thermodynamic Analysis," Journal of Cleaner Production, Vol. 239, p. 118119, 2019, doi: https://doi.org/10.1016/j.jclepro.2019.118119.
 
[17] M. Cheayb, M. M. Gallego, M. Tazerout, and S. Poncet, "Modelling and Experimental Validation of a Small-scale Trigenerative Compressed Air Energy Storage System," Applied Energy, Vol. 239, pp. 1371-1384, 2019, doi: https://doi.org/10.1016/j.apenergy.2019.01.222.
 
[18] L. Chen, L. Zhang, H. Yang, M. Xie, and K. Ye, "Dynamic Simulation of a Re-compressed Adiabatic Compressed Air Energy Storage (RA-CAES) System," Energy, Vol. 261, p. 125351, 2022, doi: https://doi.org/10.1016/j.energy.2022.125351.
 
[19] E. Yao, H. Wang, L. Wang, G. Xi, and F. Maréchal, "Thermo-economic Optimization of a Combined Cooling, Heating and Power System based on Small-scale Compressed Air Energy Storage," Energy Conversion and Management, Vol. 118, pp. 377-386, 2016, doi: https://doi.org/10.1016/j.enconman.2016.03.087.
 
[20] J. Proczka, K. Muralidharan, D. Villela, J. Simmons, and G. Frantziskonis, "Guidelines for the Pressure and Efficient Sizing of Pressure Vessels for Compressed Air Energy Storage," Energy Conversion and Management, Vol. 65, pp. 597-605, 2013, doi: https://doi.org/10.1016/j.enconman.2012.09.013.
 
[21] A. Bejan and A. D. Kraus, Heat Transfer Handbook. John Wiley & Sons, 2003.
 
[22] S. L. Dixon and C. Hall, Fluid Mechanics and Thermodynamics of Turbomachinery. Butterworth-Heinemann, 2013.
 
[23] N. Gokcen and R. Reddy, "The First Law of Thermodynamics," in Thermodynamics: Springer, 1996, pp. 37-69.
 
[24] P. H. da Silva Morais, A. Lodi, A. C. Aoki, and M. Modesto, "Energy, Exergetic and Economic Analyses of a Combined Solar-biomass-ORC Cooling Cogeneration Systems for a Brazilian Small Plant," Renewable Energy, Vol. 157, pp. 1131-1147, 2020, doi: https://doi.org/10.1016/j.renene.2020.04.147.
 
[25] F. Kreith and R. M. Manglik, Principles of Heat Transfer. Cengage Learning, 2016.
[26] F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer. Wiley New York, 1996.
 
[27] F. Calise, C. Capuozzo, A. Carotenuto, and L. Vanoli, "Thermoeconomic Analysis and Off-design Performance of an Organic Rankine Cycle Powered by Medium-temperature Heat Sources," Solar Energy, Vol. 103, pp. 595-609, 2014, doi: https://doi.org/10.1016/j.solener.2013.09.031.
 
[28] M. Sardarabadi and M. Passandideh-Fard, "Experimental and Numerical Study of Metal-Oxides/Water Nanofluids as Coolant in Photovoltaic Thermal Systems (PVT)," Solar Energy Materials and Solar Cells, Vol. 157, pp. 533-542, 2016, doi: https://doi.org/10.1016/j.solmat.2016.07.008.
 
[29] Y. A. Cengel, M. A. Boles, and M. Kanoğlu, Thermodynamics: an Engineering Approach. McGraw-hill New York, 2011.
 
[30] A. Bejan, Advanced Engineering Thermodynamics. John Wiley & Sons, New York, 2016.
 
[31] B. R. Bakshi, T. G. Gutowski, and D. P. Sekulić, Thermodynamics and the Destruction of Resources. Cambridge University Press, 2011.
 
[32] A. Razmi, M. Soltani, C. Aghanajafi, and M. Torabi, "Thermodynamic and Economic Investigation of a Novel Integration of the Absorption-recompression Refrigeration System with Compressed Air Energy Storage (CAES)," Energy Conversion and Management, Vol. 187, pp. 262-273, 2019, doi: https://doi.org/10.1016/j.enconman.2019.03.010.
 
[33] H. Safaei and D. W. Keith, "Compressed Air Energy Storage with Waste Heat Export: An Alberta Case Study," Energy Conversion and Management, Vol. 78, pp. 114-124, 2014, doi: https://doi.org/10.1016/j.enconman.2013.10.043.
 
[34] M. Farzaneh-Gord, A. Arabkoohsar, M. D. Dasht-bayaz, L. Machado, and R. Koury, "Energy and Exergy Analysis of Natural Gas Pressure Reduction Points Equipped with Solar Heat and Controllable Heaters," Renewable Energy, Vol. 72, pp. 258-270, 2014, doi: https://doi.org/10.1016/j.renene.2014.07.019.