همگن‌سازی و تحلیل انتقال حرارت نانوکامپوزیت پلی‌اتیلن تقویت شده با نانولوله‌های کربنی هلیکال

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، مهندسی مکانیک، دانشگاه تهران، تهران

2 دانشیار، مهندسی مکانیک، دانشگاه تهران، تهران

3 نویسنده مسئول، دانشیار، مهندسی مکانیک، دانشگاه تهران، تهران

چکیده

هدف از این پژوهش، مدل‌سازی هدایت حرارتی کامپوزیت پایه پلی‌اتیلن تقویت ‌شده با نانولوله‌های کربنی هلیکال با استفاده از روش اجزا محدود می‌باشد. نانولوله‌های کربنی هلیکال به شکل تصادفی با توزیع یکنواخت با نسبت منظری‌، درصد حجمی،  شکل‌‌ها و جهت‌گیری‌های مختلف توسط کد پایتون با استفاده الگوریتم مونته‌کارلو در آباکوس ایجاد شدند. نتایج نشان می‌دهد که با افزایش درصد حجمی، نسبت منظری و شعاع نانوذرات هلیکال، مقدار ضریب رسانش حرارتی افزایش می‌یابد که این افزایش برای درصد حجمی 71/0 %، به مقدار 35/9 % بیشترین عامل تاثیرگذار و برای قطر نانولوله کربنی هلیکال با مقدار 1% افزایش در ضریب رسانش حرارتی نانوکامپوزیت، کمترین تاثیر را دارد.

کلیدواژه‌ها

موضوعات


[1] Raghubanshi, H., Dikio, E. D., and Naidoo, E. B., "The Properties and Applications of
Helical Carbon Fibers and Related Materials: A Review, Journal of Industrial and
Engineering Chemistry, Vol. 44, pp. 23-42, (2016).
[2] Yousefi, E., Sheidaei, A., Mahdavi, M., Baniassadi, M., Baghani, M., and Faraji, G., "Effect
of Nanofiller Geometry on the Energy Absorption Capability of Coiled Carbon Nanotube
Composite Material", Composites Science and Technology, Vol. 153, pp. 222-231, (2017).
[3] Sharma, R., Yadav, A. K., Panwar, V., and Kar, K. K., "Viscoelastic Properties of Coil
Carbon Nanotube-coated Carbon Fiber-reinforced Polymer Nanocomposites, Journal of
Reinforced Plastics and Composites, Vol. 34, No. 12, pp. 941-950, (2015).
[4] Gertsman, V.Y., Hoffmann, M., Gleiter, H., and Birringer, R., "The Study of Grain Size
Dependence of Yield Stress of Copper for a Wide Grain Size Range", Acta Metallurgica et
Materialia, Vol. 42, No. 10, pp. 3539-3544, (1994).
[5] Itoh, S., and Ihara, S., "Toroidal Forms of Graphitic Carbon. II. Elongated Tori", Physical
Review B, Vol. 48, No. 11, pp. 8323, (1993).
[6] Dunlap, B. I., "Connecting Carbon Tubules", Physical Review B, Vol. 46, No. 3, pp. 1933,
(1992).
[7] Davis, W., Slawson, R., and Rigby, G., "An Unusual form of Carbon", Nature, Vol. 171,
No. 4356, pp. 756, (1953).
[8] Amelinckx, S., Zhang, X., Bernaerts, D., Zhang, X., Ivanov, V., and Nagy, J., "A Formation
Mechanism for Catalytically Grown Helix-shaped Graphite Nanotubes", Science, Vol. 265,
No. 5172, pp. 635-639, (1994).
[9] Zhang, M., and Li, J., "Carbon Nanotube in Different Shapes", Materials Today, Vol. 12,
No. 6, pp. 12-18, (2009).
[10] Ju, S. P., Lin, J. S., Chen, H. L., Hsieh, J. Y., Chen, H. T., Weng, M. H., Zhao, J. J., Liu,
L. Z., and Chen, M. C., "A Molecular Dynamics Study of the Mechanical Properties of a
Double-walled Carbon Nanocoil", Computational Materials Science, Vol. 82, pp. 92-99,
(2014).
[11] Volodin A., Ahlskog, M., Seynaeve, E., Van Haesendonck, C., Fonseca, A., and Nagy,
J., "Imaging the Elastic Properties of Coiled Carbon Nanotubes with Atomic Force
Microscopy", Physical Review Letters, Vol. 84, No. 15, pp. 3342, (2000).
[12] Khani, N., Yildiz, M., and Koc, B., "Elastic Properties of Coiled Carbon Nanotube
Reinforced Nanocomposite: A Finite Element Study", Materials & Design, Vol. 109, pp.
123-132, (2016).
[13] Mahdavi, M., Yousefi, E., Baniassadi, M., Karimpour, M., and Baghani, M., "Effective
Thermal and Mechanical Properties of Short Carbon Fiber/Natural Rubber Composites as
a Function of Mechanical Loading", Applied Thermal Engineering, Vol. 117, pp. 8-16,
(2017).
[14] Mehrdad Shokrieh, M., Mosalmani, R., and Soveity, S., "An Investigation on Effects of
Aspect Ratio of Representative Volume Element on Elastic Modulus of a Carbon
Nanotubes Reinforced Polymer", Modares Mechanical Engineering, Vol. 14, No. 9, pp.
107-116, (2014).
[15] Baniassadi, M., Laachachi, A., Makradi, A., Belouettar, S., Ruch, D., Muller, R.,
Garmestani, H., Toniazzo, V., and Ahzi, S., "Statistical Continuum Theory for the
Effective Conductivity of Carbon Nanotubes Filled Polymer Composites",
Thermochimica Acta, Vol. 520, No. 1-2, pp. 33-37, (2011).
[16] Mortazavi, B., Bardon, J., and Ahzi, S., "Interphase Effect on the Elastic and Thermal
Conductivity Response of Polymer Nanocomposite Materials: 3D Finite Element Study",
Computational Materials Science, Vol. 69, pp. 100-106, (2013).
[17] Sadeghi, M., and Pol, M. H., "Experimental Investigation of the Effect of the Addition of
Carbon Nanotubes on the Quasi-static Punch Shear Penetration of the Laminated Glass/
Epoxy Composite", Modares Mechanical Engineering, Vol. 15, No. 12, pp. 416-424,
(2016).
[18] Ashenai Ghasemi, F., Ghasemi, I., and Basiri, M., "Experimental Analysis of Mechanical
Properties of Polypropylene in Presence of Graphene Nano Plates and Polyolfine
Elastomer in Different Manufacturing Times", Modares Mechanical Engineering, Vol. 15,
No. 11, pp. 225-232, (2016).
[19] Yarali, E., Baniassadi, M., and Baghani, M., "Numerical Homogenization of Coiled
Carbon Nanotube Reinforced Shape Memory Polymer Nanocomposites", Smart Materials
and Structures, Vol. 28, No. 3, pp. 035026, 2019/02/14, (2019).
[20] Tran, B. V., "A Simple Model to Predict Effective Conductivity of Multicomponent
Matrix-based Composite Materials with High Volume Concentration of Particles",
Composites Part B: Engineering, Vol. 173, pp. 106997, (2019).
[21] Javanbakht, Z., Hall, W., and Öchsner, A., "Effective Thermal Conductivity of Fiber
Reinforced Composites under Orientation Clustering", Engineering Design Applications,
Vol. 92, pp. 507-519, Springer, (2019).
[22] Yves, R., Ahzi, S., Baniassadi, M., and Garmestani, H., "Applied RVE Reconstruction
and Homogenization of Heterogeneous Materials", John Wiley & Sons, (2016).
[23] Mazrouei, M., Jokar, H., Baniassadi, M., Abrinia, K., and Haghighi-Yazdi, M.,
"Evaluating the Effect of Mechanical Loading on the Effective Thermal Conductivity of
CNT/polymer Nanocomposites", Journal of Computational and Theoretical Nanoscience,
Vol. 11, No. 8, pp. 1738-1744, (2014).