بررسی تجربی اثر مجاورت زمین بر عملکرد یک بالگرد دو ملخه مدل در پرواز ایستایی

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 استادیار، دانشکده مهندسی و پرواز، گروه مهندسی بالگرد، دانشگاه افسری امام علی(ع) تهران

2 نویسنده مسئول، دانشیار، دانشکده فنی مهندسی، گروه مهندسی هوافضا، دانشگاه آزاد واحد علوم و تحقیقات، تهران

3 مربی دانشکده مهندسی و پرواز، گروه مهندسی بالگرد، دانشگاه افسری امام علی(ع)، تهران

چکیده

در تحقیق حاضر شناسایی اثر مجاورت زمین بر برخی پارامترهای عملکردی ملخ ­های چوبی گام ثابت 8×26 اینچ پشت سرهم با استفاده از یک دستگاه آزمایشگاهی چند منظوره انجام شد. آزمایش ­های اندازه­گیری تراست، و توان ملخ ­ها در سه مقدار همپوشانی متفاوت (0، 10 و 20 درصد) برای بررسی اثرات مجاورت زمین بر این مقادیر در پرواز ایستایی انجام شدند. نتایج نشان دادند که اثر افزایشی مجاورت زمین بر تراست تولیدی ملخ ­های پشت سرهم بیشتر از ملخ­ های تکی هستند. با افزایش همپوشانی ملخ ­ها و اثر جریان فواره­ای برگشتی از سطح زمین، مقدار تراست تولیدی در مجاورت اثر زمین افزایش یافت. اندازه­گیری ­­های توان نشان دادند که با کاهش ارتفاع ملخ ­ها در مجاورت اثر زمین، اثر منفی تداخل آیرودینامیکی آنها و مقدار توان مصرفی حدود  5 درصد کاهش یافت.

کلیدواژه‌ها

موضوعات


[1] Petrescu R.V., Aversa R., Akash B., Corchado J., Berto F., Apicella A. and Petrescu F.I., "About Helicopters", Journal of Aircraft and Spacecraft Technology, Vol. 1(3), pp. 204-223, (2017).
[2] Meier, W., and Olson, J., "The Influence of Usage Spectrum and Multi Lift on the Efficient Size of a Cargo Rotorcraft", Aircraft Design, Systems and Operations Conference September 7-9, Atlanta, U.S.A, pp. 62-77, (1988).
[3] Schrage, D., Costello, M., and Mittleider, D., "Design Concepts for an Advanced Cargo Rotorcraft", Journal of the American Helicopter Society, Vol. 34(4), pp. 56-65, (1989).
[4] Sal, F., "Variance Constrained Trajectory Tracking for Tandem-Rotor Helicopters", Aircraft Engineering and Aerospace Technology Journal, Vol. 92, pp. 398-403, (2018).
[5] Abhiram, D., Ganguli, R., Harursampath, D., and Friedmann, P.P., "Robust Design of Small Unmanned Helicopter for Hover Performance Using Taguchi Method", Journal of Aircraft, Vol. 55(4), pp. 1746-1753, (2018).
[6] Head, R.E., "Warm Cycle Propulsion for the 1990's Heavy Lift Helicopters", Rotary Wing Propulsion System Specialist Meeting of the American Helicopter Society, November 12-14, Williamsburg, Virginia, USA, pp. 1-7, (1982).
[7] Head, R., "Preliminary Design of a Tip-Jet-Driven Heavy Lift Helicopter Incorporating Circulation Control", Report DTNSRDC/ASED-81/07, Hughes Helicopters INC. HH-80-466, (1981).
[8] Stepniewski, W., "Factors Shaping Conceptual Design of Rotary-Wing Aircraft", 37th Annual Forum of the American Helicopter Society, May 17-20, New Orleans, La., USA., pp. 6-21,(1981).
[9] Germanowski, P.J., Stille, B.L., and Strauss, M.P., "Technology Assessment for Large Vertical-Lift Transport Tilt-rotors, Technical Report ARC-E-DAA-TN1427, NASA/CR-2010- 216384, (2010).
[10] Stepniewski, W.Z., and Shinn, R., "A Comparative Study of Soviet vs. Western Helicopters", Technical Report 82-A-9, NASA CR-3580, (1983).
[11] Chen, P.W., Sankar, L.N., Prasad, J., Schatzman, N.L., and Rajagopalan, R.G., "Extraction of Dynamic Inflow Models for Coaxial and Tandem Rotors from CFD Simulations", Vertical Flight Society's Annual Forum and Technology Display, May 13-16 , Philadelphia, Pennsylvania, USA.., pp. 1-10, (2019).
[12] Antoniadis, A., Drikakis, D., Zhong, B., Barakos, G., Steijl, R., Biava, M., Vigevano, L., Brocklehurst, A., Boelens, O., and Dietz, M., "Assessment of CFD Methods against Experimental Flow Measurements for Helicopter Flows", Aerospace Science and Technology Journal, Vol. 19(1), pp. 86-100, (2012).
[13] Hwang, J.Y., and Kwon, O.J., "Assessment of S-76 Rotor Hover Performance in Ground Effect Using an Unstructured Mixed Mesh Method", Aerospace Science and Technology Journal, Vol. 84, pp. 223-236, (2019).
[14] Lee, J.W., Oh, S.J., Yee, K.J., and Kim, D.K., "Numerical Investigation on Overlap Effects of Tandem Rotors in Forward Flight", Journal of Aeronautical and Space Sciences, Vol. 10(2), pp. 63-76, (2009).
[15] Shuilin H., Guohua, X., Yongfeng, L., Jianping, H., and Zhangwen, L., "Parametric Effect Investigation on Aerodynamic Interaction Characteristics for Tandem Rotors in Forward Flight", The Second Asian/Australian Rotorcraft Forum and The Fourth International Basic Research Conference on Rotorcraft Technology, September 08-11, Tianjin, China, pp. 358-367, (2013).
[16] Ramasamy, M., Potsdam, M., and Yamauchi, G.K., "Measurements to Understand the Flow Mechanisms Contributing to Tandem-Rotor Outwash". American Helicopter Society 71st Annual Forum, May 21–23, Virginia Beach, Va. VA, USA., pp. 1-36, (2018).
[17] Lu, Y., Su, T., Chen, R., Li, P., and Wang, Y., "A Method for Optimizing the Aerodynamic Layout of a Helicopter that Reduces the Effects of Aerodynamic Interaction", Aerospace Science and Technology Journal, Vol. 88, pp. 73-83, (2019).
[18] Su, T., Lu, Y., Ma, J., and Guan, S., "Electrically Controlled Rotor Blade Vortex Interaction Airloads and Noise Analysis Using Viscous Vortex Particle Method", Shock and Vibration Journal, Vol. 2019, pp. 1-15, (2019).
[19] Tan, J.F., Zhou, T.Y., Sun, Y.M., and Barakos, G.N., "Numerical Investigation of the Aerodynamic Interaction between a Tiltrotor and a Tandem Rotor during Shipboard Operations", Aerospace Science and Technology Journal, Vol. 87, pp. 62-72, (2019).
[20] Linton, D., Widjaja, R., and Thornber, B., "Simulations of Tandem and Coaxial Rotors using a CFD-Coupled Rotor Model", 21st Australasian Fluid Mechanics Conference, December 10-13, Adelaide, Australia, pp. 81-85, (2018).
[21] Kalra, T.S., Lakshminarayan, V.K., and Baeder, J.D., "CFD Validation of Micro Hovering Rotor in Ground Effect", AHS International Specialists Conference Proceedings on Aeromechanics, January 20-22, San Francisco, California, USA, pp. 675-696, (2010).
[22] Lee, T.E., Leishman, J.G., and Ramasamy, M., "Fluid Dynamics of Interacting Blade Tip Vortices with a Ground Plane", Journal of the American Helicopter Society, Vol. 55(2), pp. 005-015, (2010).
[23] Bagai, L.J., "A Study of Rotor Wake Developments and Wake-Body Interactions in Hover Using Wide-Field Shadowgraphy", Journal of the American Helicopter Society, Vol. 37(4), pp. 48-57, (1992).
[24] Catherine, A. M., "Download Reduction on a Wing -Rotor Configuration", Ph.D. Thesis, School of Aerospace Engineering, Institute of Technology, Georgia, (2001).
[25] Gupta, V., and Baeder, J.D., "Quad Tilt Rotor Aerodynamics in Helicopter Mode", 61st American Helicopter Society Annual Forum, June 1-3, Grapevine, Texas, USA, pp. 416, (2005).
[26] Stepniewski, W. Z., "Simplified Approach to the Aerodynamic Rotor Interference of Tandem Helicopters", American Helicopter society Meeting, September 21-22, West Coast, USA, pp. 71-91, (1955).
[27] Stepniewski, W. Z., "Rotary-wing aerodynamics. Volume 1: Basic theories of rotor aerodynamics with application to helicopters", Contractor Report NAS2-7007, NASA-CR- 3082, New York, USA, (1979).
[28] Dingeldein, R. C., "Wind Tunnel Studies of the Performance of Multirotor Configurations", NACA-TN-3236, Virginia, USA, (1954).
[29] Sweet, G.E., "Hovering Measurements for Twin-Rotor Configurations with and without Overlap", Report L-95399, NASA Technical Note D-534, (1960).
[30] Harris, F.D., "Twin Rotor Hover Performance", Journal of the American Helicopter Society, vol. 44(1) pp. 34-37, (1999).
[31] Fradenburgh, E.A., "Flow Field Measurements for a Hovering Rotor Near the Ground", Fifth Annual Western Forum, Sept. 24-26, Los Angeles, CA, USA, pp. 62-80, (1958).
[32] Shahmiri, F., "Experimental Investigation of the Hovering Performance of a Twin-Rotor Test Model", Journal of Aerospace Science and Technology (JAST), Vol. 10, pp. 1-7, (2013).
[33] Rankine, W.J.M., "On the Mechanical Principles of the Action of Propellers", Transactions of the Institute of Naval Architects Journal, Vol. 6, pp. 13-39, (1865).
[34] Froude, W., "On the Elementary Relation between Pitch, Slip and Propulsive Efficiency", Transactions of the Institute of Naval Architects Journal, Vol. 19, pp. 47-57, (1878).
[35] Lanchester, F.W., "A Contribution to the Theory of Propulsion and the Screw Propeller", Transactions of the Institute of Naval Architects Journal, Vol. 57, pp. 98-116, (1915).
[36] Ramasamy, M., "Hover Performance Measurements toward Understanding Aerodynamic Interference in Coaxial, Tandem, and Tilt Rotors", Journal of the American Helicopter Society, Vol. 60(3), pp. 1-17, (2015).
[37] Tan, J.F., Sun, Y.M., and Barakos, G.N., "Vortex Approach for Downwash and Outwash of Tandem Rotors in Ground Effect", Journal of Aircraft, Vol. 55(6), pp. 2491-2509, (2018).
[38] Tan, J.F., Cai, J.G., Barakos, G.N., Wang, C., and Huang, M.Q., "Computational Study on the Aerodynamic Interference between Tandem Rotors and Nearby Obstacles", Journal of Aircraft, Vol. 57(3), pp. 456-468, (2020).
[39] Weishäupl, A.B., and Prior, S.D., "Influence of Propeller Overlap on Large-Scale Tandem UAV Performance", Unmanned Systems Journal, Vol. 7(04), pp. 245-260, (2019).
[40] Nguyen, D.H., Liu, Y., and Mori, K., "Experimental Study for Aerodynamic Performance of Quad Rotor Helicopter", Transactions of the Japan Society for Aeronautical and Space Sciences Journal, Vol. 61(1), pp. 29-39, (2018).
[41] Mehrabi, A., and Davari, A., "Outwash Flow Behavior of Tandem Rotors near the Ground Effect", Modares Mechanical Engineering Journal, Vol. 20(6), pp. 1567-1581, (2020).
[42] Mehrabi, A., and Davari, A., "Empirical Investigation of Induced Inflow and Down wash Under the Small Tandem Rotors", Amirkabir Journal of Mechanical Engineering, Vol. 52(11), pp. 71-80, (2019).
[43] Mehrabi, A., and Davari, A., "Outwash Flow Measurement around the Subscale Tandem Rotor in Ground Effect", Engineering Science and Technology, an International Journal, Vol. 23, pp. 1374–1384, (2020).
[44] Felker, F.F., and Light, J.S., "Aerodynamic Interactions between a Rotor and Wing in Hover", Journal of the American Helicopter Society, Vol. 33(2), pp. 53-61, (1988).
[45] Mcveigh, M., "The V-22 Tilt-rotor Large-scale Rotor Performance/Wing Download Test and Comparison with Theory", Vertica Journal, Vol. 10(3), pp. 281-297, (1986).
[46] Polak, D.R., Rehm, W., and George, A.R., "Effects of an Image Plane on the Tilt Rotor Fountain Flow", Journal of the American Helicopter Society, Vol. 45(2), pp. 90-96, (2000).
[47] Piccinini, R., Tugnoli, M., and Zanotti, A., "Numerical Investigation of the Rotor-rotor Aerodynamic Interaction for eVTOL Aircraft Configurations", Energies Journal, Vol. 13, pp. 59-95, (2020).
[48] Preston, J.R., Troutman, S., Keen, E., Silva, M., Whitman, N., Calvert, M., Cardamone, M., Moulton, M., and Ferguson, S.W., "Rotorwash Operational Footprint Modeling", Technical Report of the U.S. Army Research, Development, and Engineering Command, AL 35898-5000; Technical Report RDMR-AF-14-02, (2014).
[49] Pasquali, C., Serafini, J., Bernardini, G., Milluzzo, J., and Gennaretti, M., "Numerical- Experimental Correlation of Hovering Rotor Aerodynamics in Ground Effect", Aerospace Science and Technology Journal, Vol. 106, pp. 60-79, (2020).
[50] Betz, A., "The Ground Effect on Lifting Propellers", NACA-TM-836, (1937).
[51] Knight, M., and Hefner, R. A., "Analysis of Ground Effect on the Lifting Airscrew", NACA-TN-835, (1941).
[52] Fradenburgh, E.A., "The Helicopter and the Ground Effect Machine", Journal of American Helicopter Society, Vol. 5(4), pp. 26-28, (1960).
[53] Prouty, R.W., "Ground Effect and the Helicopter", AIAA/ASEE Aircraft Design Systems and Operations Meeting, Oct. 14-16, Colorado Springs, CO., USA., pp. 14-25, (1985).
[54] Hayden, J.S., "The Effect of the Ground on Helicopter Hovering Power Required", 32th Annual National V/STOL Forum of the American Helicopter Society, May 10-12, Washington, D.C., USA., pp. 1-11, (1976).
[55] Department of, T.U.S., Federal, A. A., "Rotorcraft Flying Handbook (FAA-H-8083-21)", Federal Aviation Administration, Washington, D.C., USA., (2013).
[56] Pham, H., "Springer Handbook of Engineering Statistics", Springer Science & Business Media, Berlin/Heidelberg, Germany, pp. 301, (2006).