ارزیابی تجربی و عددی خواص و رفتار مکانیکی ساختار مشبک کلوین، ساخته‌شده توسط روش SLM

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

در این مقاله، خواص و رفتار مکانیکی ساختار مشبک کلوین به­ صورت تجربی و عددی مورد بررسی قرار گرفته است. ساختار مورد نظر، از جنس فولاد زنگ نزن 316L می­باشد و با استفاده از روش ذوب انتخابی به ­کمک لیزر (SLM) ساخته شده است. به ­منظور بررسی رفتار و خواص مکانیکی ساختار مشبک کلوین، آزمون فشار شبه استاتیک انجام شد. مدل­سازی اجزای محدود با هدف پیش­بینی خواص و رفتار مکانیکی ساختار مشبک کلوین صورت پذیرفت. بر اساس تصاویر تهیه ­شده، ساختار مشبک کلوین بدون نقص و مطابق با هندسه از پیش ­تعیین ­شده ساخته شد. نتایج آزمون فشاری تجربی حاکی ­از خواص مکانیکی مطلوب، توانایی جذب انرژی بالا و تکرارپذیری عالی نتایج ساختارهای مشبک ساخته ­شده می­باشد. همچنین مدل­سازی اجزای محدود از همخوانی مناسب با نتایج تجربی برخوردار بود.

کلیدواژه‌ها


[1] Schaedler, T.A., and Carter, W.B., “Architected Cellular Materials”, Annual Review of Materials Research, Vol. 46, pp. 187-210, (2016).
[2] Tao, W., and Leu, M.C., “Design of Lattice Structure for Additive Manufacturing”, In 2016 International Symposium on Flexible Automation (ISFA), pp. 325-332, (2016).
[3] Gibson, L.J., and Ashby, M.F., “Cellular Solids: Structure and Properties”, Cambridge University Press, Cambridge, (1997).
[4] Tamburrino, F., Graziosi, S., and Bordegoni, M., “The Design Process of Additively Manufactured Mesoscale Lattice Structures: A Review”, Journal of Computing and Information Science in Engineering, Vol. 18, pp. 040801, (2018).
[5] Helou, M., and Kara, S., “Design, Analysis and Manufacturing of Lattice Structures: an Overview”, International Journal of Computer Integrated Manufacturing, Vol. 31, pp. 243- 261, (2018).
[6] Kranz, J., Herzog, D., and Emmelmann, C., “Design Guidelines for Laser Additive Manufacturing of Lightweight Structures in TiAl6V4”, Journal of Laser Applications, Vol. 27, pp. S14001, (2015).
[7] Choy, S.Y., Sun, C.N., Leong, K.F., and Wei, J., “Compressive Properties of Ti-6Al-4V Lattice Structures Fabricated by Selective Laser Melting: Design, Orientation and Density”, Additive Manufacturing, Vol. 16, pp. 213-224, (2017).
[8] De Leon, A.C., Chen, Q., Palaganas, N.B., Palaganas, J.O., Manapat, J., and Advincula, R.C., “High Performance Polymer Nanocomposites for Additive Manufacturing Applications”, Reactive and Functional Polymers, Vol. 103, pp. 141-155, (2016).
[9] Stansbury, J.W., and Idacavage, M.J., “3D Printing with Polymers: Challenges Among Expanding Options and Opportunities”, Dental Materials, Vol. 32, pp. 54-64, (2016).
[10] Gibson, I., Rosen, D.W., and Stucker, B., “Additive Manufacturing Technologies”, Vol. 17, Springer, New York, (2014).
[11] Ozdemir, Z., Hernandez-Nava, E., Tyas, A., Warren, J.A., Fay, S.D., Goodall, R., Todd, I., and Askes, H., “Energy Absorption in Lattice Structures in Dynamics: Experiments”, International Journal of Impact Engineering, Vol. 89, pp. 49-61, (2016).
[12] Gent, A.N., and Thomas, A.G., “The Deformation of Foamed Elastic Materials”, Journal of Applied Polymer Science, Vol. 1, pp. 107-113, (1959).
[13] Yan, C., Hao, L., Hussein, A., and Raymont, D., “Evaluations of Cellular Lattice Structures Manufactured using Selective Laser Melting”, International Journal of Machine Tools and Manufacture, Vol. 62, pp. 32-38, (2012).
[14] Smith, M., Guan, Z., and Cantwell, W.J., “Finite Element Modelling of the Compressive Response of Lattice Structures Manufactured using the Selective Laser Melting Technique”, International Journal of Mechanical Sciences, Vol. 67, pp. 28-41, (2013).
[15] Gümrük, R., Mines, R.A.W., and Karadeniz, S., “Static Mechanical Behaviors of Stainless Steel Micro-lattice Structures under Different Loading Conditions”, Materials Science and Engineering: A, Vol. 586, pp. 392-406, (2013).
[16] Gümrük, R., and Mines, R.A.W., “Compressive Behavior of Stainless Steel Micro-lattice Structures”, International Journal of Mechanical Sciences, Vol. 68, pp. 125-139, (2013).
[17] Yavari, S.A., Ahmadi, S.M., Wauthle, R., Pouran, B., Schrooten, J., Weinans, H., and Zadpoor, A.A., “Relationship between Unit Cell Type and Porosity and the Fatigue behavior of Selective Laser Melted Meta-biomaterials”, Journal of the Mechanical behavior of Biomedical Materials, Vol. 43, pp. 91-100, (2015).
[18] Hedayati, R., Sadighi, M., Mohammadi-Aghdam, M., and Zadpoor, A.A., “Mechanical Behavior of Additively Manufactured Porous Biomaterials made from Truncated Cuboctahedron Unit Cells”, International Journal of Mechanical Sciences, Vol. 106, pp. 19-38, (2016).
[19] Prashanth, K., Löber, L., Klauss, H.J., Kühn, U., and Eckert, J., “Characterization of 316L Steel Cellular Dodecahedron Structures Produced by Selective Laser Melting”, Technologies, Vol. 4, pp. 34, (2016). 10.3390/technologies4040034
[20] Crupi, V., Kara, E., Epasto, G., Guglielmino, E., and Aykul, H., “Static Behavior of Lattice Structures Produced via Direct Metal Laser Sintering Technology”, Materials & Design, Vol. 135, pp. 246-256, (2017).
[21] Qi, D., Yu, H., Liu, M., Huang, H., Xu, S., Xia, Y., Qian, G., and Wu, W., “Mechanical Behaviors of SLM Additive Manufactured Octet-truss and Truncated-octahedron Lattice Structures with Uniform and Taper Beams”, International Journal of Mechanical Sciences, Vol. 163, pp. 105091, (2019).
[22] Wei, K., Yang, Q., Ling, B., Xie, H., Qu, Z., and Fang, D., “Mechanical Responses of Titanium 3D Kagome Lattice Structure Manufactured by Selective Laser Melting”, Extreme Mechanics Letters, Vol. 23, pp. 41-48, (2018).
[23] Ashby, M.F., “The Properties of Foams and Lattices”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 364, pp. 15-30, (2005).
[24] Sing, S.L., Wiria, F.E., and Yeong, W.Y., “Selective Laser Melting of Lattice Structures: A Statistical Approach to Manufacturability and Mechanical Behavior”, Robotics and Computer-Integrated Manufacturing, Vol. 49, pp. 170-180, (2018).