بررسی تجربی و عددی اثر عمق شیار بر انرژی شکست شارپی در فولاد ایکس شصت و ‏پنج

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشجو دکترا، گروه مکانیک، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران

2 استاد، مهندسی مکانیک، دانشگاه بیرجند، بیرجند، ایران

چکیده

آزمایش ضربه شارپی روی نمونه‎ های فولادی از جنس API X65 با اندازه کامل در مقیاس صنعتی با عمق شیارهای متفاوت انجام و انرژی شکست اندازه ‏گیری شد. بدین منظور ۲۴ نمونه در گروه‏ های سه ‏تایی با 8 عمق شیار متفاوت، ساخته‌شده و سپس توسط آزمایش ضربه شارپی، انرژی شکست به دست آمد. هم‎چنین شبیه‏ سازی کامپیوتری آزمایش ضربه با مدل سه‎ بعدی بر اساس قانون آسیب اصلاح‌شده گرسون در نرم‎ افزار آباکوس انجام شد. نتایج تجربی نشان می‎دهد که رابطه بین انرژی شکست (E برحسب ژول) و عمق شیار نمونه‏ ها (a برحسب میلی‏متر) برای فولاد آزمایش‌شده از نوع نمائی به‌صورت E = 503.44e-0.352a‏باشد.

کلیدواژه‌ها

موضوعات


[1] Esmaeilzadeh, A., "Investigation of the Effect of Submerged Welding Parameters on the Hardness and Fracture Energy of Thermomechanical Steel Welding", MSC Thesis of Mechanical Engineering, University of Birjand, (2013). (in Persian)
[2] Soleimani, V., "Computer Simulation of the X70 Steel Grooving Tensile Test with Gurson Model", MSC Thesis of Mechanical Engineering, University of Birjand, (2011). (in Persian)
[3] Salari Pour, H., "Analysis of the Experimental Results of the X70 Steel Impact Test", MSC Thesis of Mechanical Department, University of Birjand, (2011). (in Persian)
[4] Dieter, G.E., "Mechanical Metallurgy", McGraw-Hill Book, New York, (1988).
[5] Sajjadi, S. A., "Mechanical Behavior Materials", Ferdowsi University of Mashhad,(2006). (in Persian)
[6] Meyers, M. A., and Chawla, K.K., "Mechanical Behavior of Materials", Prentice Hall, New Jersey, (1999).
[7] Specification for Line Pipe, ANSI/API Specification 5L Forty- fourth Edition, (2007).
[8] BS EN 10 045-1:1990, "Charpy Impact Test on Metallic Materials- Part 1: Test Method (V-and U-notches)", (1990).
[9] ASTM E23-96, "Standard Test Methods for Notched Bar Impact Testing of Metallic Materials", American Society for Testing and Materials, (1996).
[10] EN ISO 14556:2000. "European Standard, Steel-Charpy V-notch Pendulum Impact Test– instrumented Test Method", (2000).
[11] Hashemi, S.H., "Apportion of Charpy Energy in API 5L Grade X70 Pipeline Steel", International Journal of Pressure Vessels and Piping, Vol. 85, pp. 879-884, (2008).
[12] Hashemi, S.H., and Mohammadyani, D., "Characterisation of Weldment Hardness, Impact Energy and Microstructure in API X65 Steel", International Journal of Pressure Vessels and Piping, Vol. 98, pp. 8-15, (2012).
[13] Hashemi, S.H., "Correction Factors for Safe Performance of API X65 Pipeline Steel", International Journal of Pressure Vessels and Piping, Vol. 86, pp. 533-540, (2009).
[14] Francois, D., and Pineau, A., "From Charpy to Present Impact Testing", Elsevier Science, (2002).
[15] Druce, S.G., Gage, G., and Popkiss, E., "Effects of Notch Geometry on the Impact Fracture Behavior of a Cast Duplex Stainless Steel", Materials Physics and Metallurgy Division, Harwell Laboratory, UKAEA, Oxfordshire, OX11 0RA, UK, (1987).
[16] Lukas, P., Kunz, L., Weiss, B., and Stickler, R., "Notch Size Effect in Fatigue", Fatigue and Fracture of Engineering Materials and Structures, Vol. 12, No. 3, pp. 175-186, (1989).
[17] Sidener, S.E., Kumar, A.S., Oglesby, D.B., Schubert, L.E., Hamilton, M.L., and Rosinski, S.T., "Dynamic Finite Element Modeling of the Effects of Size on the Upper Shelf Energy of Pressure Vessel Steels", Journal of Nuclear Materials, pp. 210-218, (1996).
[18] Gomez, F.J., Elices, M., and Planas, J., "The Cohesive Crack Concept: Application to PMMA at -60°C", Departamento de Ciencia de Materiales, Universidad Polite´cnica de Madrid E.T.S. Ingenieros de Caminos, Spain, (2004).
[19] Barati, A., Alizadeh, Y., and Aghazadeh, J., "Investigation of the Change in the Depth and Radius of the U-shaped Groove on the Integral Value of J", 17th Annual Conference of Mechanical Engineering, Tehran, Tehran University, (2009). (in Persian)
[20] Barati, E., Alizadeh, Y., and Aghazadeh, J., "The Effect of Notch Depth and Notch Root Radius on the Averaged Strain Energy Density and on Fracture Load in U Notches under Bending", Aerospace Mechanics Journal, Vol. 5, No. 2, pp. 39-49, (2009). (in Persian)
[21] Nazari, A., Aghazadeh-Mohandesi, J., Vishkasogheh, M.H., and Abedi, M., "Simulation of Impact Energy in Functionally Graded Steels", Computational Materials Science, Vol. 50, Issue. 3, pp. 1187-1196, ISSN 0927-0256, (2011).
[22] Ghajar, R.A., Alizadeh, J., Nemati, M., and Alizadeh, Y., "Evaluate the Fracture Toughness in UIC60 Rail by Charpy Impact Test at Different Temperatures", Traffic Engineering, Vol. 2, No. 3, pp. 249-259, (2011). (in Persian)
[23] Li, Y., Mao, W., Ji, L., and Huo, C., "The Effect of Constraint on Ductile Crack Growth for Anisotropy Evaluation of X100 Pipeline Steels", Procedia Materials Science, Vol. 3, pp. 1505-1511, (2004).
[24] Salavati, H., and Alizadeh, Y., "Effect of Notch Depth and Radius on the Critical Fracture Load of Bainitic Functionally Graded Steels under Mixed Mode I + II Loading", Physical Mesomechanics, Vol. 4, (2014).
[25] Cova, M., Nanni, M., and Tovo, R., "Geometrical Size Effect in High Cycle Fatigue Strength of Heavywalled Ductile Cast iron GJS400: Weakest Link vs Defect-based Approach", Procedia Engineering, Vol. 74, pp. 101-104, (2014).
[26] You, M., Li, M., Li, J.L., Liu, K., and Zhao, Y.L., "Effect of Notch Depth on the Adhesively Bonded Steel Butt-joint under Charpy Impact Test", Applied Mechanics and Materials, pp. 538-541, (2014).
[27] Mosadeghi, M.R., Salavati, H., Alizadeh, Y., and Abdullah, A., "Fracture Assessment of Specimens Weakened by U-notch made of Functionally Graded Materials under Mode I Loading", Modares Mechanical Engineering, Vol. 17, No. 2, pp. 1-9, (2017). (in Persian)
[28] Panin, S., Maruschak, P., Vlasov, I., Moiseenko, D., Berto, F., Bishchak, R., and Vinogradov, A., "The Role of Notch Tip Shape and Radius on Deformation Mechanisms of 12Cr1MoV Steel under Impact Loading. Part 1. Energy Parameters of Fracture", Fatigue & Fracture of Engineering Materials & Structures, Vol. 40, No. 4, pp. 586-596, (2017).
[29] Hosseinzadeh, A., and Hashemi, S.H., "Experimental Investigation of Notch Depth Effect on Charpy Fracture Energy in API X65 Steel", ISME Annual Conference 2018, Semnam, University of Semnan, (2018). (in Persian)
[30] Luzio, G.D., and Cusatis, G., "Cohesive Crack Analysis of Size Effect for Samples with Blunt Notches and Generalized Size Effect Curve for Quasi-brittle Materials", Engineering Fracture Mechanics, Vol. 204, pp. 15-28, ISSN 0013-7944, (2018).
[31] Shahsavani, A.R., and Hashemi, S.H., "Experimental and Numerical Investigation of Initial Notch Radius Effect on Charpy Fracture Energy in API X65 Steel", Amirkabir Journal, (2018). (in Persian)
[32] Verlinden, B., "Thermo-Mechanical Processing of Metallic Materials", First Edition, Elsevier Ltd, (2007).
[33] Hashemi, S.H., Kimiyabakhsh, M., Rezaei-Yekta, M., and Farahi, A., "Experimental and Numerical Investigation of the Influence of the Length of the Three-point Bending Point Groove on the Value of the Integral J in Steel Gas Transfer Pipes with API X65", 19th Annual Conference of the Mechanical Engineering of Iran, Birjand, University of Birjand, (2011). (in Persian)
[34] ASTM E23, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials (Approved Nov. 10. 2002, Published May 2003).
[35] Barbosa, A.Q., da Silva, L.F., Öchsner, A., Abenojar, J., and del Real, J.C., "Influence of the Size and Amount of Cork Particles on the Impact Toughness of a Structural Adhesive", in Journal of Adhesion, pp. 452-470, (2012).
[36] Tvergaard, V., and Needleman, A., "Analysis of the Cup-cone Fracture in a Round Tensile Bar", Acta Metallurgica, Vol. 32, pp. 157-169, (1984).
[37] Hashemi, S.H., Kimiyabakhsh, M., and Rezaei-Yekta, M., "Experimental and Numerical Determination of Fracture Toughness using Charpy Impact Test Data in Steel Gas Transfer Pipelines with API X65", 19th Annual Conference of Mechanical Engineering of Iran, University of Birjand, (2011). (in Persian)
[38] Rezai, M., "Experimental and Numerical (Gurson) Analysis of Tensile Testing on API X65 Pipeline Steel", MSC Thesis of Mechanical Engineering, University of Birjand, (2010) (in Persian).
[39] A. ASTM, 370, Standard Test Methods and Definitions for Mechanical Testing of Steel Products, ASTM International, 100, 19428-12959, (2005).
[40]Ghasemi-Solookloo, E., "Experimental and Numerical Investigation of Section Thickness Effect on Charpy Fracture Energy in API X65 Steel", MSC Thesis of Mechanical Engineering, University of Birjand, (2018). (in Persian)
[41] Hojjati, R., Steinhoff, M., Cooreman, S., Van den Abeele, F., and Verleysen, P., "Effects of High Strain Rates on Ductile Slant Fracture Behavior of Pipeline Steel: Experiments and Modelling", Vol. 3, Operations, Monitoring and Maintenance, Materials and Joining, International Pipeline Conference, Calgary, Alberta, Canada, 26-30 September, (2016).
[42] Landes, J.D., and Begley, J.A., "The Effect of Specimen Geometry on JIC", ASTM STP 514, American Society for Testing and Materials, Philadelphia, pp. 24-29, (1972).
[43] Beak, J.H., Kim, Y.P., Kim, C.M., Kim, W.S., and Seok, C.S., "Effect of Pre-strain on the Mechanical Properties of API X65 Pipe", Material and Science and Engineering, pp. 1473-1479, (2015).
[44] Hashemi, S.H., Rezaei, M., and Soleimani, V., "Local Damage Modeling of Ductile Fracture in API Pipeline Steels of Grade X65 and X70", Proceeding of ISME2011, The University of Birjand, (2011).
[45] Fathi-Asgarabad, A., "Investigation of Vibration of Drop-weight Test Specimen in Thermomechanical Steel", MSC Thesis of Mechanical Engineering, University of Birjand, (2013). (in Persian)