ارتعاشات آزاد میکروتیرهای چرخان ساخته شده از مواد هدفمند

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 کارشناسی ارشد، مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه شهرکرد

2 دانشیار، دانشکده فنی و مهندسی، دانشگاه شهرکرد، شهرکرد

چکیده

در این مقاله به بررسی ویژگی‌های ارتعاشی میکروتیرهای چرخان اویلر-برنولی ساخته شده از مواد هدفمند در محیط گرمایی بر اساس تئوری تنش کوپل اصلاح شده پرداخته می‌شود. جهت در نظر گرفتن اثرات نیروی گریز از مرکز برای میکروتیرهای چرخان هدفمند از انرژی جنبشی میکروتیر چرخان استفاده شده که قادر به اصلاح اشتباه رایج در میکروتیرهای چرخان هدفمند بوده که اثر نیروی گریز از مرکز تنها به‌صورت یک نیروی محوری در نظر گرفته می‌شود. تأثیر پارامتر اندازه، تغییر دما، ضریب قانون توانی ماده هدفمند و نسبت لاغری بر فرکانس طبیعی اول و شکل مودهای اول و دوم بررسی می‌گردد.

کلیدواژه‌ها

موضوعات


[1] Kang, S., Lee, S.J., and Prinz, F.B., "Size does Matter: The Pros and Cons of Miniaturization", ABB Review, Vol. 2, pp. 54-62, (2001).
[2] Mehra, A., Zhang, X., Ayón, A.A., Waitz, I.A., Schmidt, M.A., and Spadaccini, C.M., "A Six-wafer Combustion System for a Silicon Micro Gas Turbine Engine", Journal of Microelectromechanical Systems, Vol. 9, No. 4, pp. 517-527, (2000).
[3] Kong, S., Zhou, S., Nie, Z., and Wang, K., "The Size-dependent Natural Frequency of Bernoulli-Euler Micro-beams", International Journal of Engineering Science, Vol. 46, No. 5, pp. 427-437, (2008).
[4] Akgöz, B., and Civalek, Ö., "Free Vibration Analysis of Axially Functionally Graded Tapered Bernoulli–Euler Microbeams Based on the Modified Couple Stress Theory", Composite Structures, Vol. 98, pp. 314-322, (2013).
[5] Ansari, R., Gholami, R., and Sahmani, S., "Free Vibration of Size-dependent Functionally Graded Microbeams Based on the Strain Gradient Reddy Beam Theory", International Journal for Computational Methods in Engineering Science and Mechanics, Vol. 15, No. 5, pp. 401-412, (2014).
[6] Al-Basyouni, K.S., Tounsi, A., and Mahmoud, S.R., "Size Dependent Bending and Vibration Analysis of Functionally Graded Micro Beams Based on Modified Couple Stress Theory and Neutral Surface Position", Composite Structures, Vol. 125, pp. 621-630, (2015).
[7] Xiang, H.J., and Yang, J., "Free and Forced Vibration of a Laminated FGM Timoshenko Beam of Variable Thickness under Heat Conduction", Composites Part B: Engineering, Vol. 39, No. 2, pp. 292-303, (2008).
[8] Alshorbagy, A.E., Eltaher, M.A., and Mahmoud, F.F., "Free Vibration Characteristics of a Functionally Graded Beam by Finite Element Method", Applied Mathematical Modelling, Vol. 35, No. 1, pp. 412-425, (2011).
[9] Pradhan, K.K., and Chakraverty, S., "Free Vibration of Euler and Timoshenko Functionally Graded Beams by Rayleigh–Ritz Method", Composites Part B: Engineering, Vol. 51, pp. 175-184, (2013).
[10] Mashat, D.S., Carrera, E., Zenkour, A.M., Al Khateeb, S.A., and Filippi, M., "Free Vibration of FGM Layered Beams by Various Theories and Finite Elements", Composites Part B: Engineering, Vol. 59, pp. 269-278, (2014).
[11] Wattanasakulpong, N., and Chaikittiratana, A., "Flexural Vibration of Imperfect Functionally Graded Beams Based on Timoshenko Beam Theory: Chebyshev Collocation Method", Meccanica, Vol. 50, No. 5, pp. 1331-1342, (2015).
[12] Al Rjoub, Y.S., and Hamad, A.G., "Free Vibration of Functionally Euler-Bernoulli and Timoshenko Graded Porous Beams using the Transfer Matrix Method", KSCE Journal of Civil Engineering, Vol. 21, No. 3, pp. 792-806, (2017).
[13] Hoa, S.V., "Vibration of a Rotating Beam with Tip Mass", Journal of Sound and Vibration, Vol. 67, No. 3, pp. 369-381, (1979).
[14] Lin, S.C., and Hsiao, K.M., "Vibration Analysis of a Rotating Timoshenko Beam", Journal of Sound and Vibration, Vol. 240, No. 2, pp. 303-322, (2001).
[15] Turhan, Ö., and Bulut, G., "On Nonlinear Vibrations of a Rotating Beam", Journal of Sound and Vibration, Vol. 322, No. 1-2, pp. 314-335, (2009).
[16] Ramesh, M.N.V., and Rao, N.M., "Free Vibration Analysis of Pre-twisted Rotating FGM Beams", International Journal of Mechanics and Materials in Design, Vol. 9, No. 4, pp. 367-383, (2013).
[17] Arvin, H., and Bakhtiari-Nejad, F., "Nonlinear Free Vibration Analysis of Rotating Composite Timoshenko Beams", Composite Structures, Vol. 96, pp. 29-43, (2013).
[18] Arvin, H., "Free Vibration of Micro Rotating Euler-Bernoulli Beams Based on the Strain Gradient Theory", Modares Mechanical Engineering, Vol. 16, No. 2, pp. 120-128, (in Persian), (2016).
[19] Arvin, H., "The Flap Wise Bending Free Vibration Analysis of Micro-rotating Timoshenko Beams using the Differential Transform Method", Journal of Vibration and Control, Vol. 24, No. 20, pp. 4868-4884, (2018).
[20] Zhu, K., and Chung, J., "Vibration and Stability Analysis of a Simply-supported Rayleigh Beam with Spinning and Axial Motions", Applied Mathematical Modelling, Vol. 66, pp. 362-382, (2019).
[21] Heidari, M., Arvin, H., "Nonlinear Free Vibration Analysis of Functionally Graded Rotating Composite Timoshenko Beams Reinforced by Carbon Nanotubes", Journal of Vibration and Control, Vol. 25, No. 14, pp. 2063-2078, (2019).
[22] Mirzaei, M. M. H., Arefi, M., and Loghman, A., "Creep Analysis of a Rotating Functionally Graded Simple Blade: Steady State Analysis", Steel and Composite Structures, Vol. 33, No. 3, pp. 463-472, (2019).
[23] Mirzaei, M. M. H., Loghman, A., and Arefi, M., "Effect of Temperature Dependency on Thermoelastic Behavior of Rotating Variable Thickness FGM Cantilever Beam", Journal of Solid Mechanics, Vol. 11, No. 3, pp. 657-669, (2019).
[24] Mirzaei, M. M. H., Arefi, M., and Loghman, A., "Thermoelastic Analysis of a Functionally Graded Simple Blade using First-order Shear Deformation Theory", Mechanics of Advanced Composite Structures, (2019). doi: 10.22075/macs.2019.16831.1190
[25] Meirovitch, L., "Principles and Techniques of Vibrations", Vol. 1, Prentice Hall, New Jersey, (1997).
[26] Reddy, J.N., "Mechanics of Laminated Composite Plates and Shells: Theory and Analysis", CRC Press, (2003).
[27] Reddy, J.N., "An Introduction to Nonlinear Finite Element Analysis", Oxford Univeristy Press, New York, (2005).
[28] Arvin, H., Sadighi, M., and Ohadi, A.R., "A Numerical Study of Free and Forced Vibration of Composite Sandwich Beam with Viscoelastic Core", Composite Structures, Vol. 92, No. 4, pp. 996-1008, (2010).
[29] Komijani, M., Esfahani, S.E., Reddy, J.N., Liu, Y.P., and Eslami, M.R., "Nonlinear Thermal Stability and Vibration of Pre/post-buckled Temperature-and Microstructuredependent Functionally Graded Beams Resting on Elastic Foundation", Composite Structures, Vol. 112, pp. 292-307, (2014).