بررسی تجربی رفتار صفحات کامپوزیتی تقویت‌شده با نانو لوله‌های کربنی تحت بارگذاری برشی شبه‌استاتیکی

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 استادیار، دانشکده مهندسی و پروازدانشگاه افسری امام علی(ع)، تهران

2 استادیار، دانشکده مهندسی و پرواز، دانشگاه افسری امام علی(ع)، تهران

3 کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه تفرش

چکیده

در این پژوهش، به بررسی تاثیر افزودن نانوذرات در رفتار صفحات کامپوزیتی 12 لایه شیشه/ اپوکسی، تحت بارگذاری شبه‌استاتیکی برشی، به صورت تجربی پرداخته شد. در طی این پژوهش، تأثیر پارامترهایی نظیر افزودن نانو لوله‌های کربنی اصلاح‌شده با هیدرواکسید به ساختار کامپوزیت، سه سرعت بارگذاری 5، 250 و 500 میلی‌متر بر دقیقه و سه شکل هندسه نفوذکننده بر نتایج آزمون شبه‌استاتیکی بررسی شد. نتایج نشان داد که افزودن نانوذرات به ساختار کامپوزیت، باعث افزایش استحکام، کرنش شکست و همچنین انعطاف‌پذیری کامپوزیت می‌شود که این امر موجب می‌شود تا نفوذکننده، دیرتر از کامپوزیت خارج شود. همچنین با افزایش سرعت بارگذاری، استحکام کامپوزیت در برابر نفوذکننده افزایش می‌یابد و نیز با تغییر هندسه نفوذکننده، مکانیزم شکست تغییر می‌یابد.

کلیدواژه‌ها


[1] Rahimi Sharbaf, H., Rahimi, G.H., and Liaghat, G.H., “Experimental Study of Behavior of Filament Winding Composite Pipes with Liner using Glass Fibers and Silica Nanoparticles under Impact Loading”, Journal of Science and Technology of Composites, Vol. 3, No. 4, pp. 311-320, (2017). (in Persian)
[2] Kakogiannis, D., Chung Kim Yuen, S., Palanivelu, S., Van Hemelrijck, D., Van Paepegem, W., and Wastiels, J., “Response of Pultruded Composite Tubes Subjected to Dynamic and Impulsive Axial Loading”, In Composites Part B: Engineering, Vol. 55, pp. 537-547, (2013).
[3] Huang, J., and Wang, X., “Numerical and Experimental Investigations on the Axial Crushing Response of Composite Tubes”, Composite Structures, Vol. 91, Issue. 2, pp. 222- 228, (2009).
[4] Gama, B.A., and Gillespie, J.W., “Punch Shear Based Penetration Model of Ballistic Impact of Thick-section Composites”, Composite Structures, Vol. 86, No. 4, pp. 356-369, (2008).
[5] Xiao, J.B., Gama, A., and Gillespie, J.W., “Progressive Damage and Delamination in Plain Weave S-2glass/SC-15 Composites under Quasi-static Punch-shear Loading”, Composite Structures, Vol. 78, No. 2, pp. 182-196, (2007).
[6] Tehrani, M., Boroujeni, A.Y., Hartman, T.B., Haugh, T.P., and Case, S.W., “Mechanical Characterization and Impact Damage Assessment of a Woven Carbon Fiber Reinforced Carbon Nanotube–epoxy Composite”, Composites Science and Technology, Vol. 75, pp. 42-48, (2013).
[7] Soliman, E.M., Sheyka, M.P., and Taha, M.R., “Low-velocity Impact of Thin Woven Carbon Fabric Composites Incorporating Multi-walled Carbon Nanotubes”, International Journal of Impact Engineering, Vol. 47, pp. 39-47, (2012).
[8] Kostopoulos, V., Baltopoulos, A., Karapappas, P., Vavouliotis, A., and Paipetis, A., “Impact and After-impact Properties of Carbon Fibre Reinforced Composites Enhanced with Multi-wall Carbon Nanotubes”, Composites Science and Technology, Vol. 70, pp. 553-563, (2010).
[9] Muthu, J., and Dendere, C., “Functionalized Multiwall Carbon Nanotubes Strengthened GRP Hybrid Composites: Improved Properties with Optimum Fiber Content”, Composites: Part B, Vol. 67, pp. 84-94, (2014).
[10] Chandrasekaran, V.C.S., Advani, S.G., and Santare, M.H., “Influence of Resin Properties on Interlaminar Shear Strength of Glass/epoxy/MWNT Hybrid Composites”, Composites: Part A, Vol. 42, pp. 1007-1016, (2011).
[11] Manzella, A.F., Gama, B.A., and Gillespie Jr, J.W., “Effect of Punch and Specimen Dimensions on the Confined Compression Behavior of S-2 Glass/epoxy Composites”, Composite Structures, Vol. 93, No. 7, pp. 1726-1737, (2011).
[12] Harding, J., and Dong, L., “Effect of Strain Rate on the Interlaminar Shear Strength of Carbon-fiber-reinforced Laminates”, Composites Science and Technology, Vol. 53, No. 3, pp. 347-358, (1994).
[13] Rahmana, M., Hosur, M., Zainuddin, Sh., and Vaidya, U., “Effects of Aminofunctionalized MWCNTs on Ballistic Impact Performance of E-glass/epoxy Composites using a Spherical Projectile”, International Journal of Impact Engineering, Vol. 57, pp. 108-118, (2013).
[14] Khan, S.U., Iqbal, Munir, K.A., and Kim, J.K., “Quasi-static and Impact Fracture Behaviors of CFRPs with Nanoclay-filled Epoxy Matrix”, Composites: Part A, Vol. 42, pp. 253-264, (2011).
[15] Yeganeh, E.M., Liaghat, Gh. H., and Pol, H., “Experimental Investigation of Quasi-static Perforation on Laminated Glass Epoxy Composites by Indenters with Different Geometries”, Modares Mechanical Engineering, Vol. 15, No. 1, pp. 185-193, (2015). (In Persian).
[16] Nemes, J.A., Eskandari, H., and Rakitch, L., “Effect of Laminate Parameters on the Penetration of Graphite/epoxy Composites”, International Journal of Impact Engineering, Vol. 21, No. 1, pp. 97-112, (1998).
[17] Mines, R.A.W., Roach, A.M., and Jones, N., “High Velocity Perforation Behavior of Polymer Composite Laminates”, International Journal of Impact Engineering, Vol. 22, No. 5, pp. 61-88, (1999).
[18] Masoudi, A., Liaghat, Gh.H., Pol, M.H., “Experimental and Numerical Investigation, Effects of Nanoclay on the Ballistic Behavior of GLARE A.M.,”, Modares Mechanical Engineering, Vol. 14, No. 7, pp. 43-51, (2014). (In Persian).
[19] B.Haque, B.Z., and Gillespie Jr, J.W., “A Combined Theoretical-semiempirical Penetration Model of Ballistic Penetration of Thick Section Composites”, Journal of Thermoplastic Composite Materials, Vol. 25, No. 5, pp. 631-659, (2012).
[20] Bye, B.X., Han, J.H., Lu, L., Zhou, X.M., Qi, M.L., Zhang, Z., and Luo, S.N., “Dynamic Fracture of Carbon Nanotube/epoxy Composites under High Strain-rate Loading”, Composites: Part A, Vol. 68, No. 4, pp. 282-288, (2015).
[21] Hosura, M.V., Waliul Islam, S.M., Vaidya, U.K., Kumar, A., Dutta, P.K., and Jeelani, S., “Dynamic Punch Shear Characterization of Plain Weave Graphite/epoxy Composites at Room and Elevated Temperatures”, Composite Structures, Vol. 70, No. 3, pp. 295-307, (2005).
[22] Hosura, M.V., Waliul Islam, S.M., Vaidya, U.K., Dutta, P.K., and Jelani, S., “Experimental Studies on the Punch Shear Characterization of Satin Weave Graphite/epoxy Composites at Room and Elevated Temperatures”, Materials Science and Engineering A, Vol. 368, No. 1-2, pp. 269-279, (2004).