بررسی انتقال حرارت و آنتروپی تولید شده ناشی از جابجایی ترکیبی نانوسیال ترکیبی درون حفره نیم بیضی شکل متمایل؛ اثر اعمال میدان مغناطیسی غیر یکنواخت

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه یزد، ایران

2 استاد، دانشکده مهندسی مکانیک، دانشگاه یزد، ایران

چکیده

هدف از این مقاله، بررسی میزان انتقال حرارت و آنتروپی تولید شده به واسطه جابجایی ترکیبی نانوسیال ترکیبی با لحاظ کردن تأثیر حرکت براونی ذرات درون حفره نیم بیضی شکل متمایل با درپوش متحرک است. میدان مغناطیسی به دو صورت یکنواخت و غیر یکنواخت از چپ به راست بر حفره اعمال می شود. شبیه سازی به وسیله روش شبکه بولتزمن با زمان آسایش چندگانه و با نوشتن کد رایانه ای به زبان فرترن صورت گرفته است. نتایج به صورت جداول، نمودارها، خطوط جریان، خطوط هم دما و خطوط آنتروپی ثابت ارائه شده است. تأثیر کسر حجمی نانوذرات ) 06 / 0 - 0 (، عدد ریچاردسون ) 1 / 0 ، 1 و 10 (، عدد هارتمن ) 60 - 0 (، نوع اعمال میدان مغناطیسی )یکنواخت و غیر یکنواخت( و زاویه چرخش حفره ) ۹0 ،- 0 و ۹0 + درجه( بر جریان شکل گرفته درون حفره بررسی شده است. نتایج نشان می دهد افزایش کسر حجمی نانوذرات سبب افزایش قدرت جریان، عدد ناسلت متوسط، آنتروپی حجمی کل و عدد بیجان می شود و بیشترین اثر برای عدد ریچاردسون 10 و زاویه تمایل ۹0 + درجه مشاهده می شود. در تمامی حالات، افزایش عدد هارتمن از قدرت جریان و میزان انتقال حرارت می کاهد و این اثر با افزایش عدد ریچاردسون، کاهش می یابد. با اعمال میدان مغناطیسی به صورت غیر یکنواخت می توان قدرت جریان را تا بیش از ۸0 درصد و میزان انتقال حرارت را تا 35 درصد افزایش داد. افزایش عدد هارتمن، تأثیر نوع اعمال میدان مغناطیسی را مشهودتر می سازد و انتقال حرارت، بیشترین سهم را در مقدار آنتروپی کل دارد. این مطالعه می تواند در طراحی بهینه تجهیزات صنعتی از جمله خنک سازی تجهیزات الکترونیکی، مفید واقع شود.

کلیدواژه‌ها

موضوعات


[1] Sheremet, M.A., and Pop, I., "Mixed Convection in a Lid-driven Square Cavity Filled by a Nanouid: Buongiorno Mathematical Model", Applied Mathematics and Computation, Vol. 266, pp. 792-808, (2015).
[2] Rahmati, A.R., and Nemati, M., "Investigation of Magnetic Field Effect on Nanofluid Mixed Convection Inside Lid-driven K-shaped Enclosure using Lattice Boltzmann Method", Journal of Solid and Fluid Mechanics, Vol. 8, pp. 111-126, (2018).
[3] Alsabery, A.I., Tayebi, T., Kadhim, H.T., Ghalambaz, M., Hashim, I., and Chamkha, A.J., "Impact of Two-phase Hybrid Nanofluid Approach on Mixed Convection Inside Wavy Lid-driven Cavity Having Localized Solid Block", Journal of Advanced Research", Vol. 30, pp. 63-74, (2021).
[4] Armaghani, T., Sadeghi, M.S., Rashad, A.M., Mansour, M.A., Chamkha, A.J., Dogonchi, A.S., and Nabwey, H.A., "MHD Mixed Convection of Localized Heat Source/Sink in an Al2O3- Cu/water Hybrid Nanofluid in L-shaped Cavity", Alexandria Engineering Journal, Vol. 60, pp. 2947-2962, (2021).
[5] Abderrahmane, A., Qasem, N.A., Younis, O., Marzouki, R., Mourad, A., Shah, N.A., and Chung, J.D., "MHD Hybrid Nanofluid Mixed Convection Heat Transfer and Entropy Generation in a 3-D Triangular Porous Cavity with Zigzag Wall and Rotating Cylinder", Mathematics, Vol. 10, pp. 769, (2022).
[6] Elsaid, E.M., and Abdel-wahed, M.S., "MHD Mixed Convection Ferro Fe3O4/Cu-hybridnanofluid Runs in a Vertical Channel", Chinese Journal of Physics, Vol. 76, pp. 2369-282, (2022).
[7] Abdelhafez, M.A., Awad, A.A., Nafe, M.A., and Eisa, D.A., "Flow of Mixed Convection for Radiative and Magnetic Hybrid Nanofluid in a Porous Material with Joule Heating", Heat Transfer, Vol. 51, pp. 2995-3017, (2022).
[8] Nemati, M., Sefid, M., Jahromi, B., and Jahangiri, R., "The Effect of Magnetic Field and Nanoparticle Shape on Heat Transfer in an Inclined Cavity with Uniform Heat Generation/Absorption", Computational Methods in Engineering, Vol. 40, pp. 109-126, (2022).
[9] Toghraie, D., "Numerical Simulation on MHD Mixed Convection of Cu-water Nanofluid in a Trapezoidal Lid-driven Cavity", International Journal of Applied Electromagnetics and Mechanics, Vol. 62, pp. 683-710, (2020).
[10] Kefayati, G.R., "Magnetic Field Effect on Heat and Mass Transfer of Mixed Convection of Shear-thinning Fluids in a Lid-driven Enclosure with Non-uniform Boundary Conditions", Journal of the Taiwan Institute of Chemical Engineers, Vol. 51, pp. 20-33, (2015).
[11] Nemati, M., Sefid, M., and Mohamadzade, H., "The Effect of Wall Shape and Aspect Ratio on Heat Transfer Non-Newtonian Power Law Fluid in the Presence of Magnetic Field", Iranian Journal of Mechanical Engineering, Vol. 22, pp. 116-130, (2021).
[12] Guria, M., Das, S., Jana, R.N., and Ghosh, S.K., "Oscillatory Couette Flow in the Presence of an Inclined Magnetic Field", Meccanica, Vol. 44, pp. 555-564, (2009).
[13] Nemati, M., Sani, H.M., Jahangiri, R., Sefid, M., Mohammad Sajadi, S., Baleanu, D., and Ghaemi, F., "Convection Heat Transfer under the Effect of Uniform and Periodic Magnetic Fields with Uniform Internal Heat Generation: A New Comprehensive Work to Develop the Ability of the Multi Relaxation Time Lattice Boltzmann Method", Journal of Thermal Analysis and Calorimetry, Vol. 147, pp. 7883-7897, (2022).
[14] Nemati, M., Mohamadzade, H., and Sefid, M., "Investigation the Effect of Direction of Wall Movement on Mixed Convection in Porous Enclosure with Heat Absorption/Generation and Magnetic Field", Fluid Mechanics and Aerodynamics Journal, Vol. 9, pp. 99-115, (2020).
[15] Bellout, S., and Bessaїh, R., "Mixed Convection and Entropy Production of a Hybrid Nanofluid in a Porous Cylindrical Enclosure with Rotating Top Wall", Heat Transfer, Vol. 51, pp. 3540-3561, (2022).
[16] Parveen, R., and Mahapatra, T.R., "Heat and Mass Source Effect on MHD Double-diffusive Mixed Convection and Entropy Generation in a Curved Enclosure Filled with Nanofluid", Nonlinear Analysis, Vol. 27, pp. 308-330, (2022).
[17] Aghaei, A., Khorasanizadeh, H., Sheikhzadeh, G., and Abbaszadeh, M., "Numerical Study of Magnetic Field on Mixed Convection and Entropy Generation of Nanofluid in a Trapezoidal Enclosure", Journal of Magnetism and Magnetic Materials, Vol. 403, pp. 133-145, (2016).
[18] Hussain, S., Ahmed, S.E., and Saleem, F., "Impact of Periodic Magnetic Field on Entropy Generation and Mixed Convection", Journal of Thermophysics and Heat Transfer, Vol. 32, pp. 999-1012, (2018).
[19] Al‐Chlaihawi, K.K., Alaydamee, H.H., Faisal, A.E., Al‐Farhany, K., and Alomari, M.A., "Newtonian and Non‐Newtonian Nanofluids with Entropy Generation in Conjugate Natural Convection of Hybrid Nanofluid‐porous Enclosures: A Review", Heat Transfer, Vol. 51, pp. 1725-1745, (2022).
[20] Patil, P.M., Doddagoudar, S.H., and Hiremath, P.S., "Convective Nanofluid Flow Over a Vertical Cone with a Rough Surface", Heat Transfer, Vol. 51, pp. 126-141, (2022).
[21] Patil, P.M., and Kulkarni, M., "MHD Quadratic Mixed Convective Eyring-powell Nanofluid Flow with Multiple Diffusions", Chinese Journal of Physics, Vol. 77, pp. 393-410, (2022).
[22] Hashim, I., Alsabery, A.I., Sheremet, M.A., and Chamkha, A.J., "Numerical Investigation of Natural Convection of Al2O3-water Nanofluid in a Wavy Cavity with Conductive Inner Block using Buongiorno’s Two-phase Model", Advanced Powder Technology, Vol. 30, pp. 399-414, (2019).
[23] Biswas, N., Mondal, M.K., Manna, N.K., Mandal, D.K., and Chamkha, A.J., "Implementation of Partial Magnetic Fields to Magneto-thermal Convective Systems Operated using Hybrid-nanoliquid and Porous Media", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 236, pp. 5687-5704, (2022).
[24] Nemati, M., and Sefid, M., "Evaluation of Amount the Entropy Production Due to MHD Hybrid Nanofluid Conjugate Heat Transfer with Heat Absorption/Generation", Journal of Fluid Mechanics and Aerodynamics, Vol. 10, pp. 141-168, (2022).
[25] Zhang, L., Bhatti, M.M., Michaelides, E.E., Marin, M., and Ellahi, R., "Hybrid Nanofluid Flow Towards an Elastic Surface with Tantalum and Nickel Nanoparticles, under the Influence of an Induced Magnetic Field", The European Physical Journal Special Topics, Vol. 231, pp. 521-533, (2022).
[26] Alawi, O.A., Kamar, H.M., Hussein, O.A., Mallah, A.R., Mohammed, H.A., Khiadani, M., Roomi, A.B., Kazi, S.N., and Yaseen, Z.M., "Effects of Binary Hybrid Nanofluid on Heat Transfer and Fluid Flow in a Triangular-corrugated Channel: An Experimental and Numerical Study", Powder Technology, Vol. 395, pp. 267-279, (2022).
[27] Tayebi, T., and Chamkha, A.J., "Free Convection Enhancement in an Annulus between Horizontal Confocal Elliptical Cylinders using Hybrid Nanofluids", Numerical Heat Transfer, Part A: Applications, Vol. 70, pp. 1141-1156, (2016).
[28] Amine, B.M., Redouane, F., Mourad, L., Jamshed, W., Eid, M.R., and Al-Kouz, W., "Magnetohydrodynamics Natural Convection of a Triangular Cavity Involving Ag-MgO/water Hybrid Nanofluid and Provided with Rotating Circular Barrier and a Quarter Circular Porous Medium at Its Right-angled Corner", Arabian Journal for Science and Engineering, Vol. 46, pp. 12573-12597, (2021).
[29] Ashorynejad, H.R., Mohamad, A.A., and Sheikholeslami, M., "Magnetic Field Effects on Natural Convection Flow of a Nanofluid in a Horizontal Cylindrical Annulus using Lattice Boltzmann Method", International Journal of Thermal Sciences, Vol. 64, pp. 240-250, (2013).
[30] Qi, C., Li, C., Li, K., and Han, D., "Natural Convection of Nanofluids in Solar Energy Collectors Based on a Two-phase Lattice Boltzmann Model", Vol. 147, pp. 2417-2438, (2022).
[31] Nemati, M., and Sefid, M., "The Application of Multiple Relaxation Time Lattice Boltzmann Method to Simulate the Newtonian and Non-Newtonian MHD Natural Convection in Cavity with Lozenge Barrier", Journal of Fluid Mechanics and Aerodynamics, Vol. 10, pp. 17-35, (2021).
[32] Nemati, M., Sefid, M., and Rahmati, A., "Analysis of the Effect of Periodic Magnetic Field, Heat Absorption/Generation and Aspect Ratio of the Enclosure on Non-Newtonian Natural Convection", Journal of Heat and Mass Transfer Research, Vol. 8, pp. 187-203, (2021).
[33] Rahimi, A., Sepehr, M., Lariche, M.J., Mesbah, M., Kasaeipoor, A., and Malekshah, E.H., "Analysis of Natural Convection in Nanofluid-filled H-shaped Cavity by Entropy Generation and Heatline Visualization using Lattice Boltzmann Method", Physica E: Low-dimensional Systems and Nanostructures, Vol. 97, pp. 347-362, (2018).
[34] Cho, C.C., "Mixed Convection Heat Transfer and Entropy Generation of Cu-water Nanofluid in Wavy-wall Lid-driven Cavity in Presence of Inclined Magnetic Field", International Journal of Mechanical Sciences, Vol. 151, pp. 703-714, (2019).
[35] Sun, C., Zhang, Y., Farahani, S.D., Hu, C., Nemati, M., and Sajadi, S.M., "Analysis of Power-law Natural Conjugate Heat Transfer under the Effect of Magnetic Field and Heat Absorption/Production Based on the First and Second Laws of Thermodynamics for the Entropy via Lattice Boltzmann Method", Engineering Analysis with Boundary Elements, Vol.
144, pp. 165-184, (2022).
[36] Sajjadi, H., Delouei, A.A., Izadi, M., and Mohebbi, R., "Investigation of MHD Natural Convection in a Porous Media by Double MRT Lattice Boltzmann Method Utilizing MWCNT– Fe3O4/water Hybrid Nanofluid", International Journal of Heat and Mass Transfer, Vol. 132, pp. 1087-1104, (2019).
[37] Karki, P., Perumal, D.A., and Yadav, A.K., "Comparative Studies on Air, Water and Nanofluids Based Rayleigh–Benard Natural Convection using Lattice Boltzmann Method: CFD and Exergy Analysis", Journal of Thermal Analysis and Calorimetry, Vol. 147, pp. 1487- 1503, (2022).
[38] Ilis, G.G., Mobedi, M., and Sunden, B., "Effect of Aspect Ratio on Entropy Generation in a Rectangular Cavity with Differentially Heated Vertical Walls", International Communications in Heat and Mass Transfer, Vol. 35, pp. 696-703, (2008).
[39] Tiwari, R.K., and Das, M.K., "Heat Transfer Augmentation in a Two-sided Lid-driven Differentially Heated Square Cavity Utilizing Nanofluids", International Journal of Heat and Mass Transfer, Vol. 50, pp. 2002-2018, (2007).
[40] Ali, I.R., Alsabery, A.I., Bakar, N.A., and Roslan, R., "Mixed Convection in a Double Lid-driven Cavity Filled with Hybrid Nanofluid by using Finite Volume Method" Symmetry, Vol. 12(12), pp. 1977, (2020).