بهینه‌سازی پارامترهای لوله گردباده‌ای جهت دسترسی به حداقل دمای ممکن

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران

2 استادیار، دانشکده مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران

چکیده

لوله گردباده ای وسیله ای مکانیکی برای جداسازی یک جریان هوای فشرده به دو جریان
هوای سردتر و گرم تر از جریان ورودی، به طور همزمان است. طراحی ساده، حجم کم و بی
نیازی از تعمیر، باعث شده تا این دستگاه دو منظوره در صنعت مورد توجه قرار گیرد.
در این مقاله با استفاده از شبیه سازی و حل دینامیک سیالات محاسباتی، تاثیر فشار هوای
ورودی بر روی عملکرد دستگاه لوله گردباده ای بررسی شده است. جهت حل معادلات میدان
جریان از مدل تلاطمی k-ε استفاده شده و هندسه مدل ثابت در نظر گرفته شده است. نتایج
نشان می دهد که هر لوله گردباده ای یک فشار کاری بهینه دارد که از لحاظ میزان کاهش
دما و هزینه اقتصادی توجیه پذیر می باشد. مقدار این فشار کاری در نتایج این مقاله 8 / 4 بار
بدست آمد. همچنین نتایج شبیه سازی نشان می دهد که برای مقاصد سرمایشی استفاده از
نسبت جرمی 3 / 0 باعث ایجاد جدایش بالاتری در خروجی سرد خواهد شد و برای مقاصد
گرمایشی توصیه می گردد از نسبت جرمی سرد حدود 8 / 0 استفاده گردد.

کلیدواژه‌ها

موضوعات


[1] Fulton, C.D., "Ranque’s Tube", Journal of the American Society of Refrigerating Engineers, Vol. 58, pp. 473-479, (1950).
[2] Gao, C.M., Bosschaart, K.J., Zeegers, J.C.H., and de Waele, A.T.A.M., "Experimental Study on the Ranque-hilsch Vortex Tube", Technische Universiteit Eindhoven, Vol. 45(3), pp. 173-183, )2005(.
[3] Exair, "Vortex Tubes and Spot Cooling Products", www.Exair.com.
[4] P. A. H., Ltd., "Refrigeration", www.p-a-hilton.co.uk.
[5] I. A., Managment, "Vortec Air Guns", www.vortc.com.
[6] Ahlborn, B., and Groves, S., "Secondary Flow in a Vortex Tube", Fluid Dynamics Research, Vol. 21, pp. 73, (1997).
[7] Ranque, G.J., “Experiences Sur la Détente Giratoire Avec Simultanes d’un Echappement d’air Chaud et d’un Enchappement d’air Froid”, Journal de Physique et Le Radium, Vol. 4, pp. 112- 114, (1933).
[8] Hilsch, R., “Die Expansion von Gasen im Zentrifugalfeld als Kälteproze”, Journal Zeitschrift für Naturforschung, Vol. 1, pp. 208-214, (1946).
[9] Thakare, H.R., Monde, A., Patil, B.S., and Parekh, A.D., “Numerical Investigation of Flow Characteristics in Counter Flow Vortex Tube”, Procedia Engineering, Vol. 127, pp. 170-176, (2015).
[10] Rafiee, S.E., and Sadeghiazad, M.M., “Experimental and 3D CFD Investigation on Heat Transfer and Energy Separation Inside a Counter Flow Vortex Tube using Different Shapes of Hot Control Valves”, Applied Thermal Engineering, Vol. 110, pp. 648-664, (2017).
[11] Sarifudin, A., Wijayanto, D.S., Widiastuti, I., and Pambudi, N.A., “Dataset of Comprehensive Thermal Performance on Cooling the Hot Tube Surfaces of Vortex Tube at Different Pressure and Fraction”, Data in Brief, Vol. 30, Article Number. 105611, https://doi.org/10.1016/j.dib.2020.105611, (2020).
[12] Rafiee, S.E., and Sadeghiazad, M.M., “Improving the Energetical Performance of Vortex Tubes Based on a Comparison Between Parallel, Ranque-hilsch and Double-circuit Vortex Tubes using Both Experimental and CFD Approaches”, Applied Thermal Engineering, Vol. 123, pp. 1223-1236, (2017).
[13] Lagrandeur, J., Croquer, S., Poncet, S., and Sorin, M., “Exergy Analysis of the Flow Process and Exergetic Optimization of Counterflow Vortex Tubes Working with Air”, International Journal of Heat and Mass Transfer, Vol. 152, Article Number. 119527, (2020).
[14] Shamsoddini, R., and Khorasani, A.F., “A New Approach to Study and Optimize Cooling Performance of a Ranque–Hilsch Vortex Tube, “International Journal of Refrigeration, Vol. 35(8), pp. 2339-2348, (2012).
[15] Gutak, A.D., “Experimental Investigation and Industrial Application of Ranque-Hilsch Vortex Tube”, International Journal of Refrigeration, Vol. 49, pp. 93-98, (2015).
[16] Shamsoddini, R., and Abolpour, B., “A Geometric Model for a Vortex Tube Based on Numerical Analysis to Reduce the Effect of Nozzle Number, “International Journal of Refrigeration, Vol. 94, pp.49-58, (2018).
[17] Li, N., Jiang, G., Fu, L., Tang, L., and Chen, G., “Experimental Study of the Impacts of Cold Mass Fraction on Internal Parameters of a Vortex Tube”, International Journal of Refrigeration, Vol. 104, pp. 151-160, (2019).
[18] Saidi, M.H., and Yazdi, M.A., “Exergy Model of a Vortex Tube System with Experimental Results”, Energy, Vol. 24(7), pp. 625-632, (1999).
[19] Dorzhiev, S.S., Bazarova, E.G., Pimenov, S.V., and Dorzhiev, S.S., “Application of Renewable Energy Sources for Water Extraction from Atmospheric Air”, Energy Reports, Vol. 7, pp. 343-357, (2021).
[20] Martin, R.W., and Zilm, K.W., “Variable Temperature System using Vortex Tube Cooling and Fiber Optic Temperature Measurement for Low Temperature Magic Angle Spinning NMR”, Journal of Magnetic Resonance, Vol. 168(2), pp. 202-209, (2004).
[21] Kandil, H.A., and Abdelghany, S.T., “Computational Investigation of Different Effects on the Performance of the Ranque–Hilsch Vortex Tube”, Energy, Vol. 84, pp. 207-218, (2015).
[22] Fulton, C.D., “Comments on the Vortex Tube”, Journal of American Society of Refrigerating Engineers (A.S.R.E. Journal), Vol. 59, pp. 984, (1951).
[23] Kassner, R., and knoernschild, E., “Friction Laws and Energy Transfer in Circular Flow”, Wright-patterson Air Force Basr, Technical Report, F-TR-2198ND, (1984).
[24] Nilotpala, B., and Sinhamahapatra, K.P., “Numerical Analysis on the Heat and Work Transfer Due to Shear in a Hot Cascade Ranque–Hilsch Vortex Tube”, International Journal of Refrigeration, Vol. 68, pp. 161-176, (2016).
[25] Elser, K., and Hoch, M., “Das Verhalten Verschiedener Gase und die Trennung von Gasgemischen in einem Wirbelrohr”, Journal Zeitschrift für Naturforschung A, (Z. Naturf), Vol. 6a, pp. 25-31, (1951).
[26] Taparia, N., Ritesh Kumar, C., Kanwar, L., and Verma, D., “Fabrication and Experimental Analysis on L and D Ratio of Vortex Tube”, Journal of Applied Mechanical Engineering, Vol. 5(4), pp. 1-4, (2016).
[27] Jafargholinejad, S., and Heydari, N., “Simulation of Votex Tube using Natural Gas as Working Fluid with Application in City Gas Stations”, 12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, July 11-13, Costa del Sol, Spain, pp. 327-331, (2016).
[28] Li, N., Zeng, Z.Y., Wang, Z., Han, X.H., and Chen, G.M., “Experimental Study of the Energy Separation in a Vortex Tube”, International Journal of Refrigeration, Vol. 55, pp. 93-101, (2015).
[29] Rao, K.K.K., Ramesh, A., Rajesh, M., Naga, G., and Rao, M., “Experimental Aanalysis of Vortex Tube by Varying the Geometry and Material a Review”, Journal of Mechanical Engineering and Biomechanics, Vol. 1, pp. 1-13, (2016).
[30] Ouadha, A., Baghdad, M., and Addad, Y., “Effects of Variable Thermophysical Properties on Flow and Energy Separation in a VortexTtube”, International Journal of Refrigeration, Vol. 36(8), pp. 2426-2437, (2013).
[31] Li, N., Jiang, G., Fu, L., Tang, L., and Chen, G., “Experimental Study of the Impacts of Cold Mass Fraction on Internal Parameters of a Vortex Tube”, International Journal of Refrigeration, Vol. 104, pp. 151-160, (2019).
[32] Kirmaci, V., and Uluer, O., “An Experimental Investigation of the Cold Mass Fraction, Nozzle Number and Inlet Pressure Effects on Performance of Counter Flow Vortex Tube”, Journal of Heat Transfer, Vol. 131, pp. 603-609, (2009).
[33] Shamsoddini, R., and Hossein Nezhad, A., “Numerical Analysis of the Effects of Nozzles Number on the Flow and Power of Cooling of a Vortex Tube”, International Journal of Refrigeration, Vol. 33, pp. 774-782, (2010).
[34] Behera, U., Paula, P.J., Kasthurirengan, S., Karunanithi, R., Ram, S.N., Dinesh, K., and Jacobb, S., “CFD Analysis and Experimental Investigations Towards Optimizing the Parameters of Ranque-Hilsch Vortex Tube”, International Journal of Heat and Mass Transfer, Vol. 48, pp. 1961-1973, (2005).
[35] Ameri, M., and Behnia, B., “The Study of Key Design Parameters Effects on the Vortex Tube Performance”, Journal of Thermal Science, Vol. 18, Article Number. 370, (2009).
[36] Skye, H.M., Nellis, G.F., and Klein, S.A., “Comparison of CFD Analysis to Empirical Data in a Commercial Vortex Tube”, International Journal of Refrigeration, Vol. 29, pp. 71-80, (2006).