ساخت وتحلیل داربست ساخته شده به وسیله الگوی خرپای سه بعدی و روش پرینت سه بعدی

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک/ دانشگاه صنعتی بابل

2 دانشگاه صنعتی بابل*مهندسی مکانیک

چکیده

در این مقاله الگوی نوینی برای ساخت داربست‌های مهندسی بافت، با استفاده از روش پرینت سه‌بعدی ارائه شده است. جهت ساخت داربست‌ها از رزین آکریلاتی حساس به نور استفاده شده است. نمونه‌های نهایی دارای دو ساختار ساده و گرادیانی می‌باشند که رفتار مکانیکی آن‌ها مورد بررسی قرار گرفته است. خواص مکانیکی نمونه‌ها با استفاده از تست فشار تک‌محوره و معادله تجربی مورد بررسی شد. نتایج نشان می‌دهد که تحت تغییر شکل‌های بزرگ در نمونه‌ گرادیانی برخلاف نمونه ساده نواحی الاستیک متعددی بوجود می‌آید. استفاده از این نوع لایه‌بندی در کنار مزیت زیستی نمونه گرادیانی می‌تواند کارایی داربست-ها را بهبود بخشد.

کلیدواژه‌ها

موضوعات


[1] Gauvin, R., Chen, Y.C., Lee, J.W., Soman, P., Zorlutuna, P., Nichol, J.W., Bae, H., Chen, S., and Khademhosseini, A., "Microfabrication of Complex Porous Tissue Engineering Scaffolds using 3D Projection Stereolithography", Biomaterials, Vol. 33, No. 15, pp. 3824-3834, (2012).
 
[2] Ingber, D.E., Mow, V.C., Butler, D., Niklason, L., Huard, J., Mao, J., Yannas, I., Kaplan, D., and Vunjak-Novakovic, G., "Tissue Engineering and Developmental Biology: Going Biomimetic", Tissue Engineering, Vol. 12, No. 12, pp. 3265-3283, (2006).
 
[3] Kim, B.S., and Mooney, D.J., "Development of Biocompatible Synthetic Extracellular Matrices for Tissue Engineering", Trends in Biotechnology, Vol. 16, No. 5 pp. 224-230, (1998).
 
[4] Hashemi, Z., and Soleimani, M., ''Tissue Engineering Scaffolds, History, Types and Fabrication Method'', Journal of Anatomy, Vol. 10, No. 45, pp. 145-168, (2011). (in persian).
 
[5] Salmon, P.L., and Sasov, A.Y., ''Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials'', Springer, New York, United States, (2007).
 
[6] Qin, L., Genant, H.K., Griffith, J.F., and Leung, K.S., ''Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials: Techniques and Applications'', Springer Science & Business Media, New York, United States, (2007).
 [7] Ravi, S., and Chaikof, E.L., ''Biomaterials for Vascular Tissue Engineering", Regenerative Medicine, Vol. 5, No. 1, pp. 107-120, (2010).
 
[8] Bose, S., Roy, M., and Bandyopadhyay, A., ''Recent Advances in Bone Tissue Engineering Scaffolds'', Trends in Biotechnology, Vol. 30, No. 10, pp. 546-554, (2012).
 
[9] Kharaziha, M., Shin, S.R., Nikkhah, M., Topkaya, S.N., Masoumi, N., Annabi, N., Dokmeci, M.R., and Khademhosseini, A., "Tough and Flexible CNT–Polymeric Hybrid Scaffolds for Engineering Cardiac Constructs", Biomaterials, Vol. 35, No. 26, pp. 7346-7354, (2014).
 
[10] O'brien, F.J., ''Biomaterials and Scaffolds for Tissue Engineering'', Materials Today, Vol. 14, No. 3, pp. 88-95, (2011).
 
[11] Butscher, A., Bohner, M., Hofmann, S., Gauckler, L., and Müller, R., ''Structural and Material Approaches to Bone Tissue Engineering in Powder-based Three-dimensional Printing'', Acta Biomaterialia, Vol. 7, No. 3, pp. 907-920, (2011).
 
[12] Pancrazio, J.J., Wang, F., and Kelley, C.A., ''Enabling Tools for Tissue Engineering". Biosensors and Bioelectronics, Vol. 22, No. 12, pp. 2803-2811, (2007).
 
[13] Rahmani-Monfard, K., Fathi, A., and Rabiee, S.M., ''Three-dimensional Laser Drilling of Polymethyl Methacrylate (PMMA) Scaffold used for Fone Regeneration'', The International Journal of Advanced Manufacturing Technology, Vol. 84, No. 9-12, pp. 1-9, (2015).
 
[14] Wu, G.H., and Hsu, S.H., ''Polymeric-based 3D Printing for Tissue Engineering", Journal of Medical and Biological Engineering'', Vol. 35, No. 3, pp. 285-292, (2015).
 
[15] Dean, D., Wallace, J., Siblani, A., Wang, M.O., Kim, K., Mikos, A.G. and Fisher, J.P., ''Continuous Digital Light Processing (cDLP): Highly Accurate Additive Manufacturing of Tissue Engineered Bone Scaffolds'', This Taper Highlights the Main Issues Regarding the Application of Continuous Digital Light Processing (cDLP) for the Production of Highly Accurate PPF Scaffolds with Layers as Thin as 60 μm for Bone Tissue Engineering, Virtual and Physical Prototyping, Vol. 7, No. 1, pp. 13-24, (2012).
 
[16] Arora, A., Kothari, A., and Katti, D.S., ''Pore Orientation Mediated Control of Mechanical Behavior of Scaffolds and its Application in Cartilage-mimetic Scaffold Design'', Journal of the Mechanical Behavior of Biomedical Materials, Vol. 51, No. 15, pp. 169-183, (2015).
 
[17] Fuller, K.P., Gaspar, D., Delgado, L.M., Pandit, A., and Zeugolis, D.I., ''Influence of Porosity and Pore Shape on Structural, Mechanical and Biological Properties of Poly ϵ-Caprolactone Electro-spun Fibrous Scaffolds'', Nanomedicine, Vol. 11, No. 9, pp. 1031-1040, (2016).
 
 [18] Ostrowska, B., Di Luca, A., Moroni, L., and Swieszkowski, W., ''Influence of Internal Pore Architecture on Biological and Mechanical Properties of Three‐dimensional Fiber Deposited Scaffolds for Bone Regeneration'', Journal of Biomedical Materials Research Part A, Vol. 104, No. 4, pp. 991-1001, (2016).
 
[19] Duan, B., Wang, M., Zhou, W.Y., Cheung, W.L., Li, Z.Y., and Lu, W.W., ''Three-dimensional Nanocomposite Scaffolds Fabricated via Selective Laser Sintering for Bone Tissue Engineering'', Acta Biomaterialia, Vol. 6, No. 12, pp. 4495-4505, (2010).
 
[20] Seyednejad, H., Gawlitta, D., Dhert, W.J., Van Nostrum, C.F., Vermonden, T., and Hennink, W.E., ''Preparation and Characterization of a Three-dimensional Printed Scaffold Based on a Functionalized Polyester for Bone Tissue Engineering Applications'', Acta Biomaterialia, Vol. 7, No. 5, pp. 1999-2006, (2011).
 
[21] Yeong, W.Y., Sudarmadji, N., Yu, H.Y., Chua, C.K., Leong, K.F., Venkatraman, S.S., Boey, Y.C.F., and Tan, L.P., ''Porous Polycaprolactone Scaffold for Cardiac Tissue Engineering Fabricated by Selective Laser Sintering'', Acta Biomaterialia, Vol. 6, No. 6, pp. 2028-2034, (2010).
 
[22] Subramanian, A., and Lin, H.Y., ''Crosslinked Chitosan: its Physical Properties and the Effects of Matrix Stiffness on Chondrocyte Cell Morphology and Proliferation'', Journal of Biomedical Materials Research Part A, Vol. 75, No. 3, pp. 742-753, (2005).
 
[23] Li, R., Liu, J., Shi, Y., Du, M., and Xie, Z., ''316L Stainless Steel with Gradient Porosity Fabricated by Selective Laser Melting'', Journal of Materials Engineering and Performance, Vol. 19, No. 5, pp. 666-671, (2010).
 
[24] Nuttelman, C.R., Rice, M.A., Rydholm, A.E., Salinas, C.N., Shah, D.N., and Anseth, K.S., ''Macromolecular Monomers for the Synthesis of Hydrogel Niches and their Application in Cell Encapsulation and Tissue Engineering'', Progress in Polymer Science, Vol. 33, No. 2, pp. 167-179, (2008).
 
[25] Nguyen, K.T., and West, J.L., ''Photopolymerizable Hydrogels for Tissue Engineering Applications'', Biomaterials, Vol. 23, No. 22, pp. 4307-4314, (2002).
 
[26] Gibson, L.J., and Ashby, M.F., ''Cellular Solids: Structure and Properties'', Cambridge University Press, London, England, (1999).