کنترل پیش‌بین غیرخطی برای ردیابی مسیر یک ربات بازودار سیار

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 استادیار، دانشکده فنی و مهندسی، دانشگاه شهید باهنر، کرمان، ایران

2 دانشیار، دانشکده فنی و مهندسی، دانشگاه شهید باهنر، کرمان، ایران

چکیده

در این مقاله به مدل‌سازی دینامیکی و کنترل رد‌یابی مسیر یک ربات دو لینکی با مفاصل دورانی سوار بر پایه سیار، پرداخته شده است. برای تحقق این هدف، معادلات حرکت برای سیستم ذکر شده در فرم بسته، با استفاده از فرمولاسیون گیبس-‌ اپل استخراج می‌شوند. سپس بر اساس رویکرد کنترل غیرخطی پیش‌بین، قوانین کنترل سینماتیکی و دینامیکی استخراج می‌شوند. قوانین کنترلی بهینه بر اساس کمینه کردن اختلاف بین پاسخ‌های مطلوب و پیش‌بینی شده خروجی‌های سیستم به‌صورت تحلیلی توسعه داده می‌شوند. در نهایت، نتایج حاصل از شبیه‌سازی یک ربات بازودار سیار در ردیابی مسیر مرجع همزمان پایه سیار و مجری نهایی در حضور نامعینی‌های پارامتریک، نشان از توانایی سیستم کنترلی طراحی شده در رسیدن به اهداف مورد نظر را دارد.

کلیدواژه‌ها

موضوعات


[1] Whitman, A., Clayton, G., and Ashrafiuon, H., “Prediction of Wheel Slipping Limits for Mobile Robots”, Journal of Dynamic Systems, Measurement and Control, Vol. 141, No. 4, pp. 1-9, (2018).
[2] Whitman, A., Clayton, G., Poultney, A., and Ashrafiuon, H., “Asymptotic Solution and Trajectory Planning for Open-loop Control of Mobile Robots”, Journal of Dynamic Systems, Measurement, and Control, Vol. 139, No. 5, pp. 1-9, (2017).
[3] Larimi, S. R., Zarafshan P., and Moosavian, S. A. A., “A New Stabilization Algorithm for a Two-wheeled Mobile Robot Aided by Reaction Wheel”, Journal of Dynamic Systems, Measurement, and Control, Vol. 37, No. 1, pp. 1-8, (2014).
[4] Juarez, A. L., Romero, J. C., and Ramirez, H. S., “Trajectory Tracking Control of a Mobile Robot through a Flatness-based Exact Feedforward Linearization Scheme”, Journal of Dynamic Systems, Measurement, and Control, Vol. 137, No. 5, pp. 1-8, (2015).
[5] Saha, S. K., and Angeles, J., “Dynamics of Non-holonomic Mechanical Systems using a Natural Orthogonal Complement”, Transaction of the ASME, Journal of Applied Mechanics, Vol. 58, No. 1, pp. 238-243, (1991).
[6] Vossoughi, G., Pendar, H., Heidari, Z., and Mohammadi, S., “Assisted Passive Snake-like Robots: Conception and Dynamic Modeling using Gibbs-Appell Method”, Robotica, Vol. 26, No. 3, pp. 267-276, (2008).
[7] Tanner, H. G., Kyriakopouos, K. J., and Krikelis, N. I., “Advanced Agricultural Robots: Kinematics and Dynamics of Multiple Mobile Manipulators Handling Non-rigid Material”, Computer and Electronics in Agriculture, Vol. 31, No. 1, pp. 91-105, (2001).
[8] Moosavian, S. A. A., Rastegari, R., and Papadopoulos, E., “Multiple Impedance Control for Space Free-flying Robots”, Journal of Guidance, Control, and Dynamics, Vol. 28, No. 5, pp. 939-947, (2005).
[9] Mann, M. P., Zion, B., Rubinstein, D., Linker, R., and Shmulevich I., “Minimum Time Kinematic Motions of a Cartesian Mobile Manipulator for a Fruit Harvesting Robot”, Journal of Dynamic Systems, Measurement, and Control, Vol. 136, No. 5, pp. 1-9, (2014).
[10] Shafei, A. M., and Shafei, H. R., “Dynamic Modeling of Tree-type Robotic Systems by Combining 3×3 Rotation Matrices and 4×4 Transformation Ones”, Multibody System Dynamics, Vol. 44, No. 4, pp. 367-395, (2018).
[11] Shafei, A. M., and Shafei, H. R., “Dynamic Modeling of Planar Closed-chain Robotic Manipulators in Flight and Impact Phases”, Mechanism and Machine Theory, Vol. 126, pp. 141-154, (2018).
[12] Shafei, A. M., and Shafei, H. R., “Dynamic Behavior of Flexible Multiple Links Captured Inside a Closed Space”, Journal of Computational and Nonlinear Dynamics, Transactions of the ASME, Vol. 11, No. 5, pp. 1-13, (2016).
[13] Yu, Q., and Chen, I. M., “A Genera Approach to Dynamics of Nonholonomic Mobile Manipulator Systems”, ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 124, No. 4, pp. 512-521, (2002).
[14] Boyer, F., and Ali, S., “Recursive Inverse Dynamics of Multibody Systems with Joints and Wheels”, IEEE Transaction on Robotics, Vol. 27, No. 2, pp. 215-228, (2011).
[15] Korayem, M. H., Shafei, A. M., and Shafei, H. R., “Dynamic Modeling of Nonholonomic Wheeled Mobile Manipulators with Elastic Joints using Recursive Gibbs-Appell Formulation”, Scientia Iranica Transaction b-Mechanical Engineering, Vol. 19, No. 4, pp. 1092-1104, (2012).
[16] Korayem, M. H., and Shafei, A. M., “A New Approach for Dynamic Modeling of n- Viscoelastic-link Robotic Manipulators Mounted on a Mobile Base”, Nonlinear Dynamics, Vol. 79, No. 4, pp. 2767-2786, (2015).
[17] Shafei, A. M., and Shafei, H. R., “Considering Link Flexibility in the Dynamic Synthesis of Closed-loop Mechanisms: A General Approach”, Journal of Vibration and Acoustics, Transactions of the ASME, Vol. 142, No. 2, pp. 1-12, (2020).
[18] Ahmadizadeh, M., Shafei, A. M., and Fooladi, M., “A Recursive Algorithm for Dynamics of Multiple Frictionless Impact-contacts in Open-loop Robotic Mechanisms”, Mechanism and Machine Theory, Vol. 146, pp. 1-20, (2020).
[19] Rezaei, V., and Shafei, A. M., “Dynamic Analysis of Flexible Robotic Manipulators Constructed of Functionally Graded Materials”, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, Vol. 43, No. 1, pp. 327-342, (2019).
[20] Shafei, A. M., and Shafei, H. R., “Oblique Impact of Multi-flexible-link Systems”, Journal of Vibration and Control, Vol. 24, No. 5, pp. 904-923, (2018).
[21] Shafei, A. M., and Shafei, H. R., “Planar Multibranch Open-loop Robotic Manipulators Subjected to Ground Collision”, Journal of Computational and Nonlinear Dynamics, Transactions of the ASME, Vol. 12, No. 6, pp. 1-14, (2017).
[22] Shafei, A. M., “Automatic Formulation of Falling Multiple Flexible-link Robotic Manipulators using 3×3 Rotational Matrices”, Journal of Theoretical and Applied Vibration and Acoustics, Vol. 3, No. 1, pp. 15-41, (2017).
[23] Shafei, A. M., Korayem, M. H., “Theoretical and Experimental Study of DLCC for Flexible Robotic Arms in Point-to-point Motion”, Optimal Control Applications and Methods, Vol. 38, No. 6, pp. 963-972, (2017).
[24] Shafei, A. M., and Shafei, H. R., “A Systematic Method for the Hybrid Dynamic Modeling of Open Kinematic Chains Confined in a Closed Environment”, Multibody System Dynamics, Vol. 38, No. 1, pp. 21-42, (2016).
[25] Korayem, M. H., Shafei, A. M., Doosthoseini, M., Absalan, F., and Kadkhodaei, B., “Theoretical and Experimental Investigation of Viscoelastic Serial Robotic Manipulators with Motors at the Joints using Timoshenko Beam Theory and Gibbs-Appell Formulation”, Proc IMechE Part K: J Multi-body Dynamics, Vol. 230, Vol. 1, pp. 37-51, (2016).
[26] Korayem, M. H., Shafei, A. M., Absalan, F., Kadkhodaei, B., and Azimi, A., “Kinematic and Dynamic Modeling of Viscoelastic Robotic Manipulators using Timoshenko Beam Theory: Theory and Experiment”, International Journal of Advanced Manufacturing Technology, Vol. 71, No. 5, pp. 1005-1018, (2014).
[27] Mata, V., Provenzano, S., Cuadrado, J. I., and Valero, F., “Serial-robot Dynamics Algorithms for Moderately Large Number of Joints”, Mechanism and Machine Theory, Vol. 37, pp. 739-755, (2002).
[28] Brockett, R. W., “Asymptotic Stability and Feedback Stabilization”, Differential Geometric Control Theory, Vol. 27, No. 1, pp. 181-191, (1983).
[29] Lin, S., and Goldenberg, A., “Robust Damping Control of Mobile Manipulators”, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), Vol. 32, No. 1, pp. 126-132, (2002).
[30] White, G. D., Bhatt, R. M., Tang, C. P., and Krovi, V. N., “Experimental Evaluation of Dynamic Redundancy Resolution in a Nonholonomic Wheeled Mobile Manipulator”, IEEE/ASME Transactions on Mechatronics, Vol. 14, No. 3, pp. 349-357, (2009).
[31] Ge, W., and Ye, D., “Sliding Mode Variable Structure Control of Mobile Manipulators”, International Journal of Modelling, Identification and Control, Vol. 12, No. 1, pp. 166-172, (2011).
[32] Zhou, Q., Li, H., Wu, C., Wang, L., and Ahn, C. K., “Adaptive Fuzzy Control of Nonlinear Systems with Unmodeled Dynamics and Input Saturation using Small-gain Approach”, IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 47, No. 8, pp. 1979-1989, (2017).
[33] Yi, G., Mao, J., Wang, Y., Guo, S., and Miao, Z., “Adaptive Tracking Control of Nonholonomic Mobile Manipulators using Recurrent Neural Networks”, International Journal of Control, Automation and Systems, Vol. 16, No. 3, pp. 1390-1403, (2018).
[34] Li, Z., and Kang, Y., “Dynamic Coupling Switching Control Incorporating Support Vector Machines for Wheeled Mobile Manipulators with Hybrid Joints”, Automatica, Vol. 46, No. 5, pp. 832-842, (2010).
[35] Boukattaya, M., Jallouli, M., and Damak, T., “On Trajectory Tracking Control for Nonholonomic Mobile Manipulators with Dynamic Uncertainties and External Torque Disturbances”, Robotics and Autonomous Systems, Vol. 60, No. 12, pp. 1640-1647, (2012).
[36] Chen, N., Song, F., Li, G., Sun, X., and Ai, C., “An Adaptive Sliding Mode Backstepping Control for the Mobile Manipulator with Nonholonomic Constraints”, Communications in Nonlinear Science and Numerical Simulation, Vol. 18, No. 10, pp. 2885-2899, (2013).
[37] Peng, J., Yu, J., and Wang, J., “Robust Adaptive Tracking Control for Nonholonomic Mobile Manipulator with Uncertainties, ISA Transactions, Vol. 53, No. 4, pp. 1035-1043, (2014).
[38] Shojaei, Kh., “An Adaptive Output Feedback PID Controller for n-Link Type (m,s) Electrically Driven Mobile Manipulators”, Journal of Dynamic Systems, Measurement, and Control, Vol. 141, pp. 1-10, (2019).
[39] Mirzaeinejad, H., and Shafei, A. M., “Modeling and Trajectory Tracking Control of a Two-wheeled Mobile Robot: Gibbs-Appell and Prediction-based Approaches”, Robotica, Vol. 36, No. 10, pp. 1551-1570, (2018).
[40] Mirzaeinejad, H., Mirzaei, M., and Kazemi, R., “Enhancement of Vehicle Braking Performance on Split-μ Roads using Optimal Integrated Control of Steering and Braking Systems”, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, Vol. 230, pp. 401-415, (2015).
[41] Mirzaeinejad, H., Mirzaei, M., and Rafatnia, S., “A Novel Technique for Optimal Integration of Active Steering and Differential Braking with Estimation to Improve Vehicle Directional Stability”, ISA Transactions, Vol. 80, pp. 513-527, (2018).
[42] Mirzaeinejad, H., “Robust Predictive Control of Wheel Slip in Antilock Braking Systems Based on Radial Basis Function Neural Network”, Applied Soft Computing, Vol. 70, pp. 318-329, (2018).
[43] Jafari, M., Mirzaei, M., and Mirzaeinejad, H., “Optimal Nonlinear Control of Vehicle Braking Torques to Generate Practical Stabilizing Yaw Moments”, International Journal of Automotive and Mechanical Engineering, Vol. 11, pp. 2639, (2015).
[44] Korayem, M. H., and Shafei, A. M., “Motion Equation of Nonholonomic Wheeled Mobile Robotic Manipulator with Revolute-prismatic Joints using Recursive Gibbs- Appell Formulation”, Applied Mathematical Modeling, Vol. 39, No. 5-6, pp. 1701-1716, (2015).
[45] Korayem, M. H., Shafei, A. M., and Dehkordi, S. F., “Systematic Modeling of a Chain of N-flexible Link Manipulators Connected by Revolute-prismatic Joints using Recursive Gibbs-Appell Formulation”, Archive of Applied Mechanics, Vol. 84, No. 2, pp. 187-206, (2014).
[46] Korayem, M. H., Shafei, A. M., and Shafei, H. R., “Dynamic Modeling of Nonholonomic Wheeled Mobile Manipulators with Elastic Joints using Recursive Gibbs-Appell Formulation”, Scientia Iranica Transaction b-Mechanical Engineering,
Vol. 19, No. 4, pp. 1092-1104, (2012).
[47] Korayem, M. H., and Shafei, A. M., “Application of Recursive Gibbs-Appell Formulation in Deriving the Equations of Motion of N-viscoelastic Robotic Manipulators in 3D Space using Timoshenko Beam Theory”, Acta Astronautica, Vol. 83, pp. 273-294, (2013).
[48] Slotine, J. J. E., and Li, W., “Applied Nonlinear Control”, Prentice-Hall, Englewood Cliffs, NJ, (1991).
[49] Mirzaeinejad, H., “Optimization-based Nonlinear Control Laws with Increased Robustness for Trajectory Tracking of Non-holonomic Wheeled Mobile Robots”, Journal of Transportation Research Part C, Vol. 101, pp. 1-17, (2019).
[50] Mirzaei, M., and Mirzaeinejad, H., “Fuzzy Scheduled Optimal Control of Integrated Vehicle Braking and Steering Systems”, IEEE/ASME Transactions on Mechatronics, Vol. 22, pp. 2369-2379, (2017).
[51] Mirzaeinejad, H., and Shafei, A. M., “A Nonlinear Optimal Multivariable Controller Design for Trajectory Tracking of Non-holonomic Mobile Robots”, Journal of Control, Vol. 11, No. 1, pp. 11-18, (2017).
[52] Mirzaei, M., Mirzaeinejad, H., Vahidi, S., Heidarian, D., and Khosrowjerdi, M. J., “Nonlinear Control and Estimation of Tire Longitudinal Slip for using in Anti-lock Braking System”, Journal of Control, Vol. 5, No. 4, pp. 32-41, (2012).
[53] Mirzaeinejad, H., and Mirzaeim, M., “A Novel Method for Non-linear Control of Wheel Slip in Anti-lock Braking Systems”, Control Engineering Practice, Vol. 18, No. 8, pp. 918-926, (2010).
[54] Chen, W. H., Balance, D. J., and Gawthrop, P. J., “Optimal Control of Nonlinear Systems: A Predictive Control Approach”, Automatica, Vol. 39, No. 4, pp. 633-641, (2003).