تعیین پارامترهای مدل مجیک با استفاده از روش نگاشت‌های خودسازمان و بررسی تاثیر شرایط جاده ‌ای بر روی پارامترهای مدل

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشجوی دکترا، مکانیک بیوسیستم، دانشگاه ارومیه، ارومیه

2 دانشیار، مکانیک بیوسیستم، دانشگاه ارومیه، ارومیه

3 استادیار، مکانیک، دانشگاه آزاد اسلامی، واحد ایلخچی

چکیده

مدل مجیک معروف­ترین و پرکاربردترین مدل تایر می­باشد که دارای تعدادی پارامتر برای توصیف مدل است در این مقاله از روش نگاشت­ های خود سازمان یافته (SOM) برای به­ دست آوردن پارامترهای مدل مجیک استفاده شده است و تأثیر شرایط مختلف جاده ­ای (مرطوب و خشک) بر روی پارامتر­های مدل بررسی شده است. داده برداری توسط وسیله طراحی شده توسط گروه تحقیقاتی دانشگاه مالاگا انجام گرفت تا تست های واقعی در جاده ­های متداول انجام شود. منحنی به ­دست آمده از مدل با منحنی واقعی مقایسه شد و مشاهده شد سازگاری خوبی بین دو منحنی وجود دارد و SOM توانسته است با دقت خوبی پارامترها را در دو سطح جاده ­ای مرطوب و خشک تخمین بزند.

کلیدواژه‌ها

موضوعات


[1] Wang, J., and Longoria, R. G., "Combined Tire Slip and Slip Angle Tracking Control for Advanced Vehicle Dynamics Control Systems", Proceedings of the 45th IEEE Conference on Decision & Control, San Diego, CA, USA, pp. 1733-1738, 13-15 Dec )2006(.
[2] Aghasizade-Shaarbaf, S., and Mirzaei, M., "Identification of Tire Force Model using Experimental Data of a New Scaled Test Rig for Design of Nonlinear Slip Controller", Amirkabir J. Mech. Eng., Vol. 5, No. 1, pp. 187-200, (2018).
[3] Wagner, P., Wriggers, P., Veltmaat, L., Clasen, H., Prange, C., and Wies, B., "Numerical Multiscale Modelling and Experimental Validation of Low Speed Rubber Friction on Rough Road Surfaces Including Hysteretic and Adhesive Effects", Tribiology International, Vol. 111, pp. 243-253, (2017).
[4] Qun Zhao, Y., Qing, Li, H., Lin, F., Wang, J., and Xue-Wu, Ji., "Estimation of Road Friction Coefficient in Different Road Conditions Based on Vehicle Braking Dynamics", Chinese Mechanical Engineering Society and Springer-Verlag Berlin Heidelberg., Vol. 30, pp. 982-990, (2017).
[5] Khaleghiani, S.M., Emami, A., and Taheri, S., "A Technical Survey on Tire-road Friction Estimation", Friction, Vol. 5, No. 2, pp. 123-146, (2017(.
[6] Kusaka, K., and Suzuki, T., "The Statistical Tire Model and its Application to Vehicle Dynamics Design 7th IFAC Symposium on Advances in Automotive Control", The International Federation of Automatic Control, Tokyo, Japan, September 4-7 (2013).
[7] Na, S.D., Park, D.W., and Yoo, W.S., "Rigid Ring with Bouc-Wen tire Model for Vehicle Dynamic Analysis", Journal of Mechanical Engineering Science, Vol. 231, No. 19, pp. 3530-3540, (2017).
[8] Kusachov, A., Bruzelius, F., and Hjort, M., "A Double Interaction Brush Model for Snow Conditions", Tire Science and Technology, Vol. 47, pp. 118-140, (2019).
[9] Rudolf, H., Bosch, B., Herman, A., Hamersma, P., and Schalk, Els., "Parameterization, Validation and Implementation of an All-terrain SUV FTire Tyre Model", Journal of Terramechanics, Vol. 67, pp. 11-23, (2016).
[10] Bakker, E., Pacejka, H.B., and Lidner, L., "A New Tire Model with an Application in Vehicle Dynamics Studies", SAE 890087, pp. 83-95, (1989).
[11] Ružinskas, A., and Sivilevičius, H., "Magic Formula Tyre Model Application for a Tyre-Ice Interaction", Procedia Engineering., Vol. 187, pp. 335-341, (2017).
[12] Cabrera, J.A., Castillo, J. J., Pérez, J., Velasco, J. M., Guerra., A. J., and Hernández, P., “A Procedure for Determining Tire-Road Friction Characteristics using a Modification of the Magic Formula Based on Experimental Results", Sensors., Vol. 18, No. 3, pp. 896, (2018).
[13] Jayachandran, R., Denis Asho, S., and Narayanan, S., "Fuzzy Logic Based Modelling and Simulation Approach for the Estimation of Tire Forces", Procedia Engineering, Vol. 64, pp. 1109-1118, (2013).
[14] Cabrera, J.A., Ortiz, A., Carabiasl, E., and Simon, A., "An Alternative Method to Determine the Magic Tyre Model Parameters using Genetic Algorithms", Vehicle System Dynamics, Vol. 41, No. 2, pp. 109-127, )2004(.
[15] Ortiz, A., Cabrera, J. A., Guerra, A. J., and Simon, A., "An Easy Procedure to Determine Magic Formula Parameters: A Comparative Study between the Starting Value Optimization Technique and the IMMa Optimization Algorithm", Vehicle System Dynamics, Vol. 44, No. 9, pp. 689-718, (2006).
[16] Castro, A. A., Leal Braga, S., and Speranza Neto, M., 22nd International Congress of Mechanical Engineering (COBEM 2013), Ribeirão Preto, SP, Brazil, November 3-7, (2013).
[17] Farroni, F., Lamberti, R., Mancinelli, N., and Timpone, F., " TRIP-ID: A Tool for a Smart and Interactive Identification of Pacejka Formula Tyre Model Parameters from Experimental Data Acquired on Track or Test Ring", Mechanical Systems and Signal Processing, Vol. 102, pp. 1-22, )2018(.
[18] Garatti, S., and Bittanti, S., "Parameter Estimation in the Pacejka’s Tyre Model through the TS Method", IFAC Proceedings Volumes, Vol. 42, No. 10, pp. 1304-1309, (2009).
[19] Zhang, K., Duan, Y., Yang, X., Yang, J., and Zhang, Y., "Determination of Magic Formula Tyre Model Parameters using Homotopy Optimization Approach", SAE Technical Paper, Vol. 01, (2020).
[20] Vijay Alagappan, A., Narasimha Rao, K.V., and Krishna Kumar, R., "A Comparison of Various Algorithms to Extract Magic Formula Tyre Model Coefficients for Vehicle Dynamics Simulations", Vehicle System Dynamics, Vol. 53, No. 2, pp. 154-178, (2014).
[21] Senabre, C., Velasco, E., and Valero, S., ‘‘Self-organizing maps’’ for Identification of Tire Model Longitudinal Braking Parameters of a Vehicle on a Roller Brake Tester and on Flat Ground", Neural Comput & Applic, Vol. 21, pp. 1775-1782, (2011).
[22] Qian, J., Nguyen, N.P., and Oya, Y., "Introducing Self-organized Maps (SOM) as a Visualization Tool for Materials Research and Education", Results in Materials, Vol. 4, (2019).
[23] Valero, S., Aparicio, J., Senabre, C., and Ortiz García, M., “Comparative Analysis of Self Organizing Maps vs. Multilayer Perceptron Neural Networks for Short-term Load Forecasting”, The work Described in this Paper is Being Supported by the Valencian Government, Department of Education under Research Project, Vol. 22, No. 4, (2010).
[24] Pacejka, H.B., and Besselink, I.J.M., “Magic Formula Tyre Model with Transient Properties”, Vehicle System Dynamics, Vol. 27, pp. 243-249, (1996).
[25] Chaudhary, V., Bhatia, R.S., and Ahlawat, K., “A Novel Self-organizing Map (SOM) Learning Algorithm with Nearest and Farthest Neurons”, Alexandria Engineering Journal, Vol. 53, pp. 827-831, (2014).
[26] Chaudhary, V., Bhatia, R.S., and Ahlawat, A., “The Selforganizing Map Learning Algorithm with Inactive and Relative Winning Frequency of Active Neurons”, HKIE Trans. Vol. 21, No 1, pp. 62-67, (2014).
[27] Lawrence, R.D., Almasi, G.S., and Rushmeier, H.E., "A Scalable Parallel Algorithm for Self-organizing Maps with Applications to Sparse Data Mining Problems", Data Min. Knowl. Discov. Vol. 3, No. 2, pp. 171-195, (1999).
[28] Moaveni, B., Khosravi, M., Abad, R., Nasiri, S., and Amiri, M., “Vehicle Longitudinal Velocity Estimation using Two New Estimators and without Measuring the Braking Torque”, Modares Mechanical Engineering, Vol. 14, No. 5, pp. 183-193, (2015).
[29] Aguado-Rojas, M., WilliamPasillas-Lépine, W., and Loría, A., "A Hybrid Controller for ABS Based on Extended-braking-stiffness Estimation", IFAC-PapersOnLine, Vol. 52 , pp. 452-457, (2019).
[30] Mokarram, M., Khoei, A., and Hadidi, K., "A Fuzzy Anti-lock Braking System (ABS) Controller using CMOS Circuits", Microprocessors and Microsystems, Vol. 70, pp. 47-52, (2019).