بررسی وابستگی رسانندگی حرارتی به دما و زمان در نانوسیال-های هیبریدی حاوی نانولوله‌های کربنی

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

گروه فیزیک، دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز، جمهوری اسلامی ایران

چکیده

در این تحقیق، رسانندگی حرارتی نانوسیال‌های هیبریدی حاوی نانولوله‌های کربنی با طول‌های مختلف و غلطت 1/0 درصد حجمی در سیال پایه‌ی ۵۰٪ آب یون‌زدایی شده و ۵۰٪ اتیلن گلیکول در دماهای 30، 50، 70 و 90 درجه‌ی سانتی‌گراد اندازه‌گیری شد. به‌منظور تغییر طول نانولوله‌های کربنی و افزایش پخش-شدگی آن‌ها در سیال پایه، نانولوله‌ها عامل‌دار شدند. نتایج اندازه‌گیری‌ها نشان دادند رسانندگی حرارتی نانوسیال‌های حاوی نانولوله‌های کربنی عامل‌دار شده نسبت به نانوسیال‌های حاوی نانولوله‌های اولیه بالاتر می‌باشد. همچنین با افزایش دما و زمان، افزایش در رسانندگی حرارتی مشاهده شد به طوری‌که پس از گذشت ۶۵ روز این افزایش، حدود 20 درصد بود.

کلیدواژه‌ها

موضوعات


[1] Choi, S.U.S., "Enhancing Thermal Conductivity of Fluids with Nanoparticles, in: D. A. Siginer, H. P. Wang (Eds.), Developments and Applications of Non-Newtonian Flows", the American Society of Mechanical Engineers, New York, (FED-Vol. 231/ MD-Vol. 66), pp. 99-105, (1995).
 
[2] Munkhbayara, B., Tanshena, M.R., Jeouna, J., Chungb, H., and Jeong, H., "Surfactant-Free Dispersion of Silver Nanoparticles into MWCNT-Aqueous Nanofluids Prepared by One-step Technique and their Thermal Characteristics", Ceramics International, Vol. 39, pp. 6415-6425, (2013).
 
[3] Talaei, Z., Mahjoub, A.R., Rashidi, A.M., Amrollahi, A., and Emami Meibodi, M., "The Effect of Functionalized Group Concentration on the Stability and Thermal Conductivity of Carbon Nanotube Fluid as Heat Transfer Media", International Communications in Heat and Mass Transfer, Vol. 38, pp. 513-517, (2011).
 
[4] Chen, L., and Xie, H., "Silicon Oil Based Multiwalled Carbon Nanotubes Nanofluid with Optimized Thermal Conductivity Enhancement", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 352, pp. 136-140, (2009).
 
[5] Munkhbayar, B., Nine, M.J., Jeoun, J., Erdene, M.B., Chung, H., and Jeong, H., "Influence of Dry and Wet Ball Milling on Dispersion Characteristics of the Multi-walled Carbon Nanotubes in Aqueous Solution with and without Surfactant", Powder Technology, Vol. 234, pp. 132-140, (2013).
[6] Emami Meibodi, M., Vafaie-Sefti, M., Rashidi, A.M., Amrollahi, A., Tabasi, M., and Sid Kalal, H., "The Role of Different Parameters on the Stability and Thermal Conductivity of Carbon Nanotube/Water Nanofluids", International Communications in Heat and Mass Transfer, Vol. 37, pp. 319–323, (2010).
 
[7] Rastogi, R., Kaushal, R., Tripathi, S.K., Sharma, A.L., Kaur, I., and Bharadwaj, L.M., "Comparative Study of Carbon Nanotube Dispersion using Surfactants", Journal of Colloid and Interface Science, Vol. 328, pp. 421–428, (2008).
 
[8] Beck, M.P., Yuan, Y., Warrier, P., and Teja, A.S., "The Effect of Particle Size on the Thermal Conductivity of Alumina Nanofluids", Journal of Nanoparticle Research, Vol. 11, pp. 1129-1136, (2009).
 
[9] Shima, P.D., Philip, J., and Raj, B., "Role of Microconvection Induced by Brownian Motion of Nanoparticles in the Enhanced Thermal Conductivity of Stable Nanofluids", Applied Physics Letters, Vol. 94, pp. 223101-223103, (2009).
 
[10] Wei, X., Zhu, H., Kong, T., and Wang, L., "Synthesis and Thermal Conductivity of Cu2O Nanofluids", International Journal of Heat and Mass Transfer, Vol. 52, pp. 4371-4374, (2009).
 
[11] Wang, L., and Wei, X., "Nanofluids: Synthesis, Heat Conduction, and Extension", Journal of Heat Transfer, Vol. 131, pp. 033102-1:033102-7, (2009).
 
[12] Longo, G.A., Zilio, C., Ceseracciu, E., and Reggiani, M., "Application of Artificial Neural Network (ANN) for the Prediction of Thermal Conductivity of Oxide–water Nanofluids", Nano Energy, Vol. 1, pp. 290-296, (2012).
 
[13] Xing, M., Yu, J., and Wang, R., "Experimental Study on the Thermal Conductivity Enhancement of Water Based Nanofluids using Different Types of Carbon Nanotubes", International Journal of Heat and Mass Transfer, Vol. 88, pp. 609-616, (2015).
 
[14] Pal, B., and Pal, Bh., "Influence of CuO Nanostructures on the Thermal Conductivity of DI Water and Ethylene Glycol Based Nanofluids", Particulate Science and Technology, Vol. 33, pp. 224-228, (2015).
 
[15] Sati, P., Shende, R.C., and Ramaprabhu, S., "An Experimental Study on Thermal Conductivity Enhancement of DI Water-EG Based ZnO(CuO)/graphene Wrapped Carbon Nanotubes Nanofluids", Thermochimica Acta, Vol. 666, pp. 75-81, (2018).
 
[16] Naddaf, A., and Zeinali Heris, S., "Experimental Study on Thermal Conductivity and Electrical Conductivity of Diesel Oil-based Nanofluids of Graphene Nanoplatelets and Carbon Nanotubes", International Communications in Heat and Mass Transfer, Vol. 95, pp. 116-122, (2018).
 
[17] Sajid, M.U., and Ali, H.M., "Thermal Conductivity of Hybrid Nanofluids: A Critical Review", International Journal of Heat and Mass Transfer, Vol. 126, pp. 211-234, (2018).
 
[18] Omrani, A.N., Esmaeilzadeh, E., Jafari, M., and Behzadmehr, A., "Effects of Multi Walled Carbon Nanotubes Shape and Size on Thermal Conductivity and Viscosity of Nanofluids", Diamond & Related Materials, Vol. 93, pp. 96-104, (2019).
 
[19] Farbod, M., Ahangarpour, A., and Etemad, S.Gh., "Stability and ThermalConductivityof Water-based Carbon NanotubeNanofluids",Particuology, Vol. 22, pp. 59-65, (2015).
 
[20] Ahangarpour, A., and Farbod, M., "The Noble Effect of Eging on the Thermal Conductivity of Modified CNTs-Ethylene Glycol Nanofluids", Physics and Chemistry of Liquids, Vol. 56, pp. 9-15, (2018).
 
[21] Leonga, K.Y., Ku Ahmada, K.Z., Ongb, H.C., Ghazalic, M.J., and Baharumd, A., "Synthesis and Thermal Conductivity Characteristic of Hybrid Nanofluids – A Review", Renewable and Sustainable Energy Reviews, Vol. 75, pp. 868-878, (2017).