بررسی آزمایشگاهی ضریب انتقال حرارت در جوشش استخری با استفاده از دینامیک حباب ها در سه محلول آبی، الکترولیتی و نانوسیال

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 گروه مهندسی شیمی، واحدکرمانشاه، دانشگاه آزاد اسلامی ،کرمانشاه،ایران

2 گروه صنایع شیمیایی، مرکز علمی کاربردی دهلران، ایلام، ایران

3 گروه مهندسی شیمی، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران

چکیده

این پژوهش به بررسی تغییرات ضریب انتقال حرارت در جوشش استخری در سه محلول آبی، الکترولیتی و نانوسیال پرداخته ‌است. یک ظرف شیشه‌ای عایق بندی شده با یک استوانه مسی در درون آن به عنوان سطح انتقال حرارت با زبری ثابت لحاظ گردید. پارامترهای دینامیکی حباب تاثیر بسزایی بر ضریب انتقال حرارت داشت. رسوب ناشی از نانوذرات و نمک در نهایت موجب تعویق فرآیند تبدیل جوشش هسته‌ای به جوشش فیلمی شد. نتایج نشان داد که نانوسیال اکسید مس میزان ضریب انتقال حرارت را در حدود ۳۸/۴۴٪ بیشتر از آب دی‌یونیزه و 39/76٪ بیشتر از محلول نمک ارتقا داد.

کلیدواژه‌ها

موضوعات


 
[1] Esawy, M., and Malayeri, M., "Modeling of CaSO4 Crystallization Fouling of Finned Tubes during Nucleate Pool Boiling", Chemical Engineering Research and Design, Vol. 118, pp. 51-60, (2017).
 
[2] Zonouzi, S.A., Aminfar, H., and Mohammadpourfard, M., "A Review on Effects of Magnetic Fields and Electric Fields on Boiling Heat Transfer and CHF", Applied Thermal Engineering, Vol. 151, pp. 11-25,  (2019).
 
[3] Mudawar, I., "Assessment of High-Heat-Flux Thermal Management Schemes", IEEE Transactions on Components and Packaging Technologies, Vol. 24, pp. 122-141, (2001).
 [4] Mudawar, I., "Two-phase Microchannel Heat Sinks: Theory, Applications, and Limitations", Journal of Electronic Packaging, Vol. 133, pp. 041002, (2011).
 
[5] Mudawar, I., "Recent Advances in High-flux, Two-phase Thermal Management", Journal of Thermal Science and Engineering Applications, Vol. 5, pp. 021012, (2013).
 
[6] Liang, G., and Mudawar, I., "Review of Spray Cooling–Part 1: Single-phase and Nucleate Boiling Regimes, and Critical Heat Flux", International Journal of Heat and Mass Transfer, Vol. 115, pp. 1174-1205, (2017).
 
[7] Bahreini, M., Ramiar, A., and Ranjbar, A.A., " Development of a Phase-Change Model for the Volume-of Fluid Method in Open FOAM", Journal of Heat and Mass Transfer Research, Vol. 3, pp. 131-143, (2016).
 
[8] Godinez, J.C., Fadda, D., Lee, J., and You, M.S., "Development of a Stable Boehmite Layer on Aluminum Surfaces for Improved Pool Boiling Heat Transfer in Water", Applied Thermal Engineering, Vol. 156, pp. 541-549, (2019).
 
[9] Wang, J., Diao, M., and Liu, X., "Numerical Simulation of Pool Boiling with Special Heated Surfaces", International Journal of Heat and Mass Transfer, Vol. 130, pp. 460-468, (2019).
 
[10] Chen, X., and Qiu, H., "Bubble Dynamics and Heat Transfer on a Wettability Patterned Surface", International Journal of Heat and Mass Transfer, Vol. 88, pp. 544-551, (2015).
 
[11] Emery, T.S., Jaikumar, A., Raghupathi, P., Joshi, I., and Kandlikar, S.G., "Dual Enhancement in HTC and CHF for External Tubular Pool Boiling–A Mechanistic Perspective and Future Directions", International Journal of Heat and Mass Transfer, Vol. 122, pp. 1053-1073, (2018).
 
[12] Mei, Y., Shao, Y.,  Gong, S., Zhu, Y., and Gu, H., "Effects of Surface Orientation and Heater Material on Heat Transfer Coefficient and Critical Heat Flux of Nucleate Boiling", International Journal of Heat and Mass Transfer, Vol. 121, pp. 632-640, (2018).
 
[13] Righetti, G., Doretti, L., Sadafi, H., Hooman, K., and Mancin, S., "Water Pool Boiling Across Low Pore Density Aluminum Foams", Heat Transfer Engineering, Vol. 41, pp. 1673-1682, (2020).
 
[14] Mohammadi, N., Fadda, D., Choi, C.K., Lee, J., and You, S., "Effects of Surface Wettability on Pool Boiling of Water using Super-polished Silicon Surfaces", International Journal of Heat and Mass Transfer, Vol. 127, pp. 1128-1137, (2018).
 
[15] Khoshechin, M., Salimi, F., and Jahangiri, A., "The Influence of Surface Roughness and Solution Concentration on Pool Boiling Process in Diethanolamine Aqueous Solution", Heat and Mass Transfer, Vol. 54, pp. 2963-2973, (2018).
 
[16] Li, Y. Y., Chen, Y. J., and Liu, Z. H., "A Uniform Correlation for Predicting Pool Boiling Heat Transfer on Plane Surface with Surface Characteristics Effect", International Journal of Heat and Mass Transfer, Vol. 77, pp. 809-817, (2014).
 [17] Fazel, S.A.A., and Shafaee, S.B., "Bubble Dynamics for Nucleate Pool Boiling of Electrolyte Solutions", Journal of Heat Transfer, Vol. 132, pp. 081502, (2010).
 
[18] Wenzel, U., Balzer, F., Jamialahmadi, M., and Müller-Steinhagen, H., "Pool Boiling Heat Transfer Coefficients for Binary Mixtures of Acetone, Isopropanol, and Water", Heat Transfer Engineering, Vol. 16, pp. 36-43, (1995).
 
[19] Das, M.K., and Kishor, N., "Determination of Heat Transfer Coefficient in Pool Boiling of Organic Liquids using Fuzzy Modeling Approach", Heat Transfer Engineering, Vol. 31, pp. 45-58, (2010).
 
[20] Shen, G., Ma, L., Zhang, S., Zhang, S., and An, L., "Effect of Ultrasonic Waves on Heat Transfer in Al2O3 Nanofluid under Natural Convection and Pool Boiling", International Journal of Heat and Mass Transfer, Vol. 138, pp. 516-523, (2019).
 
[21] Rishi, A.M., Kandlikar, S.G., and Gupta, A., "Improved Wettability of Graphene Nanoplatelets (GNP)/Copper Porous Coatings for Dramatic Improvements in Pool Boiling Heat Transfer", International Journal of Heat and Mass Transfer, Vol. 132, pp. 462-472, (2019).
 
[22] Mahmoodi, M., and  Hemmat Esfe, M., "Buoyancy Driven Heat Transfer of a Nanofluid in a Differentially Heated Square Cavity under Effect of an Adiabatic Square Baffle", Applied Thermal Engineering, Vol. 1, pp. 1-13, (2015).
 
[23] Ji, W. T., Zhao, E. T., Zhao, C. Y., Zhang, H., and Tao, W. Q., "Falling Film Evaporation and Nucleate Pool Boiling Heat Transfer of R134a on the Same Enhanced Tube", Applied Thermal Engineering, Vol. 147, pp. 113-121, (2019).
 
[24] Dewangan, A.K., Kumar, A., and Kumar, R., "Experimental Study of Nucleate Pool Boiling of R-134a and R-410A on a Porous Surface", Heat Transfer Engineering, Vol. 40, pp. 1249-1258, (2019).
 
[25] Dooly, R., and Glater, J., "Alkaline Scale Formation in Boiling Sea Water Brines", Desalination, Vol. 11, pp. 1-16, (1972).
 
[26] Ebrahimi-Dehshali, M., Najm-Barzanji, S.Z., and Hakkaki-Fard, A., "Pool Boiling Heat Transfer Enhancement by Twisted-tape Fins", Applied Thermal Engineering, Vol. 135, pp. 170-177, (2018).
 
[27] Ahn, H.S., Jo, H.J., Kang, S.H., and Kim, M.H., "Effect of Liquid Spreading Due to Nano/Microstructures on the Critical Heat Flux during Pool Boiling", Applied Physics Letters, Vol. 98, pp. 071908, (2011).
 
[28] Hegde, R.N., Rao, S.S., and Reddy, R., "Flow Visualization and Study of Critical Heat Flux Enhancement in Pool Boiling with Al2O3-water Nanofluids", Thermal Science, Vol. 16, pp. 445-453, (2012).
 
[29] Aminfar, H., Mohammadpourfard, M., and Sahraro, M., "Numerical Simulation of Nucleate Pool Boiling on the Horizontal Surface for Nano-fluid using Wall Heat Flux Partitioning Method", Computers & Fluids, Vol. 66, pp. 29-38, (2012).
 [30] Ahn, H.S., Lee, Kim, C.J., and Kim, M.H., "The Effect of Capillary Wicking Action of Micro/Nano Structures on Pool Boiling Critical Heat Flux", International Journal of Heat and Mass Transfer, Vol. 55, pp. 89-92, (2012).
 
[31] Shoghl, S.N., Bahrami, M., and Moraveji, M.K., "Experimental Investigation and CFD Modeling of the Dynamics of Bubbles in Nanofluid Pool Boiling", International Communications in Heat and Mass Transfer, Vol. 58, pp. 12-24, (2014).
 
[32] Ignácio, I., Cardoso, E.M., Gasche, J.L., and Ribatski, G., "in ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems", (American Society of Mechanical Engineers), pp. V001T004A018-V001T004A018, (2015).
 
[33] Hamda, M., and Hamed, M., "Bubble Dynamics in Pool Boiling of Nanofluids", 12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Malta, Valletta, 16-18 July (2016).
 
[34] Kim, S. J., McKrell, T., Buongiorno, J., and Hu, L.W., "Experimental Study of Flow Critical Heat Flux in Alumina-water, Zinc-oxide-water, and Diamond-water Nanofluids", Journal of Heat Transfer, Vol. 131, 043204, (2009).
 
[35] Kim, S.J., McKrell, T., Buongiorno, J., and Hu, L.W., "Subcooled Flow Boiling Heat Transfer of Dilute Alumina, Zinc Oxide, and Diamond Nanofluids at Atmospheric Pressure", Nuclear Engineering and Design, Vol. 240, pp. 1186-1194, (2010).
 
[36] Lee, S. W., Park, S. D., Kang, S. R., Kim, S. M., Seo, H., Lee, D. W., and Bang, I. C., "Critical Heat Flux Enhancement in Flow Boiling of Al 2O3 and SiC Nanofluids under Low Pressure and Low Flow Conditions", Nuclear Engineering and Technology, Vol. 44, pp. 429-436, (2012).
 
[37] Kim, T.I., Chang, W.J., and Chang, S.H., "Flow Boiling CHF Enhancement using Al2O3 Nanofluid and an Al2O3 Nanoparticle Deposited Tube", International Journal of Heat and Mass Transfer, Vol. 54, pp. 2021-2025, (2011).
 
[38] Lee, S.W., Kim, K.M., and Bang, I.C., "Study on Flow Boiling Critical Heat Flux Enhancement of Graphene Oxide/Water Nanofluid", International Journal of Heat and Mass Transfer, Vol. 65, pp. 348-356, (2013).
 
[39] Abedini, E., Behzadmehr, A., Rajabnia, H., Sarvari, S., and Mansouri, S., "Experimental Investigation and Comparison of Subcooled Flow Boiling of TiO2 Nanofluid in a Vertical and Horizontal Tube", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 227, pp. 1742-1753, (2013).
 
[40] Gorenflo, D., Knabe, V., and Bieling, V., "Bubble Density on Surfaces with Nucleate Boiling-its Influence on Heat Transfer and Burnout Heat Flux at Elevated Saturation Pressures", in: International Heat Transfer Conference Digital Library, Begel House Inc, Laboratorium für Wärme- und Kältetechnik, Universität -GH- Paderborn, D-4790 Paderborn, Pohlweg 55, Germany, (1986).
 
 [41] Fazel, S.A.A., "A Genetic Algorithm-based Optimization Model for Pool Boiling Heat Transfer on Horizontal Rod Heaters at Isolated Bubble Regime", Heat and Mass Transfer, Vol. 53, pp. 2731-2744, (2017).
 [42] P. t.Perry’s., "Chemical Engineering", Handbook 6th Edition, McGraw-Hill Companies, Inc. All Rights Reserved, Manufactured in the United States of America, (1994).
 
[43] Wen, D., and Wang, B., "Effects of Surface Wettability on Nucleate Pool Boiling Heat Transfer for Surfactant Solutions", International Journal of Heat and Mass Transfer, Vol. 45, pp. 1739-1747, (2002).
 
[44] Stephan, K., and Abdelsalam, M., "Heat-transfer Correlations for Natural Convection Boiling", International Journal of Thermal Sciences, Vol. 23, pp. 73-87, (1980).
 
[45] Cooper, M., "Saturation Nucleate Pool Boiling A Simple Correlation", in: IChemE Symp. Ser, Vol. 86, pp. 786-793, (1984).
 
[46] Gorenflo, D., "Pool Boiling, VDI Heat Atlas", Dusseldorf, Berlin, Heidelberg Germany, (1993).
 
[47] Zhou, J., Zhang, Y., and Wei, J., "A Modified Bubble Dynamics Model for Predicting Bubble Departure Diameter on Micro-pin-finned Surfaces under Microgravity", Applied Thermal Engineering, Vol. 132, pp. 450-462, (2018).
 
[48] Sarafraz, M., and Hormozi, F., "Scale Formation and Subcooled Flow Boiling Heat Transfer of CuO–water Nanofluid Inside the Vertical Annulus", Experimental Thermal and Fluid Science, Vol. 52, pp. 205-214, (2014).
 
[49] Sarafraz, M., and Hormozi, F., "Convective Boiling and Particulate Fouling of Stabilized CuO-ethylene Glycol Nanofluids inside the Annular Heat Exchanger", International Communications in Heat and Mass Transfer, Vol. 53, pp. 116-123, (2014).
 
[50] Sarafraz, M., and Hormozi, F., "Nucleate Pool Boiling Heat Transfer Characteristics of Dilute Al2O3–ethyleneglycol Nanofluids", International Communications in Heat and Mass Transfer, Vol. 58, pp. 96-104, (2014).
 
[51] Sarafraz, M.M., and Hormozi, F., "Forced Convective and Nucleate Flow Boiling Heat Transfer to Alumnia Nanofluids", Periodica Polytechnica Chemical Engineering, Vol. 58, pp. 37-46, (2014).
 
[52] Salari, E., Peyghambarzadeh, M., Sarafraz, M.M., and Hormozi, F., "Boiling Heat Transfer of Alumina Nano-fluids: Role of Nanoparticle Deposition on the Boiling Heat Transfer Coefficient", Periodica Polytechnica Chemical Engineering, Vol. 60, pp. 252-258, (2016).
 
[53] Wang, C., and Dhir, V., "Effect of Surface Wettability on Active Nucleation Site Density During Pool Boiling of Water on a Vertical Surface", Journal of Heat Transfer, Vol. 115, pp. 659-669, (1993).
 
 [54] Evangelidou, M., Esawy, M., and Malayeri, M., "Impact of Thermal Shock on Fouling of Various Structured Tubes During Pool Boiling of CaSO4 Solutions", Heat Transfer Engineering, Vol. 34, pp. 776-785, (2013).
 
[55] Zuber, N., "Hydrodynamic Aspects of Boiling Heat Transfer",  (United States Atomic Energy Commission, Technical Information Service), Ramo-Wooldridge Corp., Los Angeles, CA (United States); Univ. of California, Los Angeles, CA (United States) Sponsoring Org.:  USDOE OSTI Identifier:  4175511, (1959).
 
[56] Gerardi, C., Buongiorno, J., Hu, L.W., and McKrell, T., "Study of Bubble Growth in Water Pool Boiling through Synchronized, Infrared Thermometry and High-speed Video", International Journal of Heat and Mass Transfer, Vol. 53, pp. 4185-4192, (2010).
 
[57] Pioro, I., Rohsenow, W., and Doerffer, S., "Nucleate Pool-boiling Heat Transfer I: Review of Parametric Effects of Boiling Surface", International Journal of Heat and Mass Transfer, Vol. 47, pp. 5033-5044 (2004).
 
[58] Ivey, H., "Relationships between Bubble Frequency, Departure Diameter and Rise Velocity in Nucleate Boiling", International Journal of Heat and Mass Transfer, Vol. 10, pp. 1023-1040, (1967).
 
[59] Kangude, P., and Srivastava, A., "Performance of SiO2-water Nanofluids for Single Bubble-based Nucleate Pool Boiling Heat Transfer", International Journal of Thermal Sciences, Vol. 138, pp. 612-625, (2019).
 
[60] Jamal-Abad, T.M., Dehghan, M., Saedodin, S., Valipour, M.S., and Zamzamian, A., "An Experimental Investigation of Rheological Characteristics of Non- Newtonian Nanofluids", Journal of Heat and Mass Transfer Research, Vol. 1, pp. 17-23, (2014).
 
[61] Manetti, L.L., Stephen, M.T., Beck, P.A., and Cardoso, E.M., "Evaluation of the Heat Transfer Enhancement during Pool Boiling using Low Concentrations of Al2O3-water Based Nanofluid", Experimental Thermal and Fluid Science, Vol. 87, pp. 191-200, (2017).
 
[62] Khooshehchin, M., Mohammadidost, A., and Ghotbinasab, S., "An Optimization Study on Heat Transfer of Pool Boiling Exposed Ultrasonic Waves and Particles Addition", International Communications in Heat and Mass Transfer, Vol. 114, pp. 104558 (2020).
 
[63] Kim, T., Kim, J.M., Kim, J.H., Park, S.C., and Ahn, H.S., "Orientation Effects on Bubble Dynamics and Nucleate Pool Boiling Heat Transfer of Graphene-modified Surface", International Journal of Heat and Mass Transfer, Vol. 108, pp. 1393-1405, (2017).
 
[64] Lotfi, R., Rashidi, A.M., and Amrollahi, A., "Experimental Study on the Heat Transfer Enhancement of MWNT-water Nanofluid in a Shell and Tube Heat Exchanger", International Communications in Heat and Mass Transfer, Vol. 39, pp. 108-111, (2012).
 
[65] Cheng, L., and Liu, L., "Boiling and Two-phase Flow Phenomena of Refrigerant-based Nanofluids: Fundamentals, Applications and Challenges", International Journal of Refrigeration, Vol. 36, Vol. 421-446, (2013).
 
[66] Yao, S., and Teng, A., "Effect of Nanofluids on Boiling Heat Transfer Performance", International Journal of Refrigeration, Vol. 9, No. 14, pp. 2818, (2019).
 
[67] Jun, S., Wi, H., Gurung, A., Amaya, M., and You, S.M., "Pool Boiling Heat Transfer Enhancement of Water using, Brazed Copper Microporous Coatings", Journal of Heat Transfer Vol. 138, pp. 071502, (2016).