بررسی رفتار پس از تسلیم استخوان کورتیکال در آزمایش فروروی نانو با استفاده از روش اجزاء محدود اویلر-لاگرانژ دلخواه

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دکترا، مهندسی مکانیک دانشگاه خواجه نصیرالدین طوسی، تهران

2 استاد، مهندسی مکانیک دانشگاه خواجه نصیرالدین طوسی، تهران

3 مهندسی و علم مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده

در این مقاله با به­ کارگیری روش اجزاء محدود اویلر-لاگرانژ دلخواه، جریان ماده و میزان برآمدگی استخوان در آزمایش فروروی نانو با خطای کمتر از 1% پیش­ بینی گردید. همچنین پارامترهای مناسب برای مدل دراکر-پراگر برای پیش­ بینی رفتار پس از تسلیم استخوان کورتیکال گاوی ارائه شد، به‌طوری‌که نتایج به‌دست‌آمده از میزان نیروی وارده بر استخوان برحسب جابجایی ابزار فرورونده، با انحراف کمتر از 5% از نتایج آزمایشگاهی بدست آمد. همچنین نشان داده شد که تغییر زاویه اتساع از صفر به 10 درجه تا 40% می­تواند بیشترین نیروی وارد بر استخوان را افزایش دهد.

کلیدواژه‌ها

موضوعات


[1] Tahmasbi, V., and Ghoreishi, M., "Modeling and Multi Objective Optimization of Effective Parameters in Drilling Cortical Bone", Modares Mechanical Engineering, Proceedings of the Advanced Machining and Machine Tools Conference, Vol. 15, pp. 113-119, (2015).
[2] Rho, J.Y., Kuhn-Spearing, L., and Zioupos, P., "Mechanical Properties and the Hierarchical Structure of Bone", Medical Engineering and Physics, Vol. 20, pp. 92-102, (1998).
[3] Li, S., Abdel-Wahab, A., Demirci, E., and Silberschmidt, V. V, "Penetration of Cutting Tool into Cortical Bone: Experimental and Numerical Investigation of Anisotropic Mechanical Behaviour", Journal of Biomechanics, Vol. 47, pp. 1117-1126, (2014).
[4] Rho, J.Y., "An Ultrasonic Method for Measuring the Elastic Properties of Human Tibial Cortical and Cancellous Bone", Ultrasonics, Vol. 34, pp. 777-783, (1996).
[5] Reilly, D.T., and Burstein, A.H., "The Elastic and Ultimate Properties of Compact Bone Tissue", Journal of Biomechanics, Vol. 8, pp. 393-405, (1975).
[6] Yamada, H., and Evans, F.G., "Strength of Biological Materials", Baltimore, MD, (1970).
[7] Alam, K., Mitrofanov, A.V., and Silberschmidt, V. V., "Thermal Analysis of Orthogonal Cutting of Cortical Bone using Finite Element Simulations", International Journal of Experimental and Computational Biomechanics, Vol. 1, No. 3, pp. 236-251, (2010).
[8] Santiuste, C., Rodríguez-Millán, M., Giner, E., and Miguélez, H., "The Influence of Anisotropy In Numerical Modeling of Orthogonal Cutting of Cortical Bone", Composite Structures, Vol. 116, pp. 423-431, (2014).
[9] Mercer, C., He, M.Y., Wang, R., and Evans, A.G., "Mechanisms Governing the Inelastic Deformation of Cortical Bone and Application to Trabecular Bone", Acta Biomaterialia, Vol. 2, pp. 59-68, (2006).
[10] Novitskaya, E., Chen, P.Y., Lee, S., Castro-Ceseña, A., Hirata, G., Lubarda, V.A., and Mckittrick, J., "Anisotropy in the Compressive Mechanical Properties of Bovine Cortical Bone and the Mineral and Protein Constituents", Acta Biomaterialia, Vol. 7, pp. 3170- 3177, (2011).
[11] Manilay, Z., Novitskaya, E., Sadovnikov, E., and Mckittrick, J., "A Comparative Study of Young and Mature Bovine Cortical Bone", Acta Biomaterialia, Vol. 9, pp. 5280-5288, (2013).
[12] Tai, K., Ulm, F. J., and Ortiz, C., "Nanogranular Origins of the Strength of Bone", Nano Letters, Vol. 6, pp. 2520-2525, (2006).
[13] Mullins, L.P., Bruzzi, M.S., and Mchugh, P.E., "Calibration of a Constitutive Model for the Post-yield Behaviour of Cortical Bone", Journal of the Mechanical Behavior of Biomedical Materials, Vol. 2, pp. 460-470, (2009).
[14] Farrissey, L.M., and Mchugh, P.E., "Determination of Elastic and Plastic Material Properties using Indentation: Development of Method and Application to a Thin Surface Coating", Materials Science and Engineering A, Vol. 399, pp. 254-266, (2005).
[15] Movahhedy, M., Gadala, M.S., and Altintas, Y., "Simulation of the Orthogonal Metal Cutting Process using an Arbitrary Lagrangian-Eulerian Finite-element Method", Journal of Materials Processing Technology, Vol. 103, pp. 267-275, (2000).
[16] Donea, J., Huerta, A., J. Ph., P., and Rodríguez-Ferrán, A., "Arbitrary Lagrangian-Eulerian Methods, Encyclopedia of Computational Mechanics", Vol. 1, Fundamentals. John Wiley & Sons, Ltd. ISBN: 0-470-84699-2. (2004).
[17] Pantalé, O., Rakotomalala, R., and Touratier, M., "An Ale Three-dimensional Model of Orthogonal and Oblique Metal Cutting Processes", International Journal of Forming Processes, Vol. 1. pp. 371-388, (1998).
[18] Saghafi, B., Ghoreishi, M., and Narooei, K., "Prediction of Safe Zone for Osteonecrosis in the Cutting Process of Bovine Cortical Femur Bone using Arbitrary Lagrangian-Eulerian Method and Multi-objective Optimization", International Journal of Advanced Manufacturing Technology, Vol. 104, pp. 2031-2043, (2019).
[19] Demiral, M., Abdel-Wahab, A., and Silberschmidt, V., "A Numerical Study on Indentation Properties of Cortical Bone Tissue: Influence of Anisotropy", Acta of Bioengineering and Biomechanics, Vol. 17, pp. 3-14, (2015).
[20] Oliver, W.C., and Pharr, G.M., "Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology", Journal of Materials Research, Vol. 19, pp. 3-20, (2004).
[21] Oliver, W.C., and Pharr, G.M., "An Improved Technique for Determining Hardness and Elastic Modulus using Load and Displacement Sensing Indentation Experiments", Journal of Materials Research, Vol. 7, pp. 1564-1583, (1992).
[22] Drucker, D.C., and Prager, W., "Soil Mechanics and Plastic Analysis or Limit Design", Quarterly of Applied Mathematics, Vol. 10, pp. 157-165, (1952).
[23] Mijangos, I., and Kelly, K.U.O., "Drucker-Prager Finite Element Constitutive Model of Microindentation in Polycrystalline Alumina", Sem Annual Conference & Exposition on Experimental & Applied Mechanics Proceedings, Vol. 4, pp. 2704-2712, Albuquerque, New Mexico, USA, (2009).
[24] Toal, V.R., "The Mechanics of Microdamage\Rand Microfracture in Trabecular Bone", Doctoral Dissertation, Queensland University of Technology, Australia, (2013).
[25] Adam, C.J., and Swain, M. V., "The Effect of Friction on Indenter Force and Pile-up in Numerical Simulations of Bone Nanoindentation", Journal of the Mechanical Behavior of Biomedical Materials, Vol. 4, pp. 1554-1558, (2011).
[26] Carnelli, D., Lucchini, R., Ponzoni, M., Contro, R., and Vena, P., "Nanoindentation Testing and Finite Element Simulations of Cortical Bone Allowing for Anisotropic Elastic and Inelastic Mechanical Response", Journal of Biomechanics, Vol. 44, pp. 1852-1858, (2011).