طرح بهینه ی ریز ساختار مواد پادکشسان با استفاده از رویکرد اجزای متحرک شکل پذیر

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد سازه، دانشکده مهندسی، دانشگاه شیراز

2 استادیار، دانشکده مهندسی، دانشگاه شیراز

چکیده

استفاده از مواد با ضریب پواسون منفی (مواد پادکشسان) در صنعت به سرعت در‌ حال رشد است. اگر‌چه این نوع مواد در طبیعت یافت می شوند، اما برای کاربردهای صنعتی لازم است که طراحی و ساخته ‌شوند. ریزساختار مواد پادکشسان، تاثیر زیادی بر ضریب پواسون آن ‌ها دارد. تحقیق حاضر سعی دارد تا با استفاده از روش بهینه یابی توپولوژی اجزای متحرک شکل پذیر، طرحی را برای ریز ساختار این مواد پیشنهاد دهد. در این روش، توپولوژی سازه با استفاده از موقعیت و شکل اجزا تعریف می شود. پارامترهای تعریف‌کننده ی مکان و شکل این اجزا، متغیرهای طراحی در مساله ی بهینه یابی می باشند. تعداد نسبتاً کم متغیرهای طراحی و تعریف مرزهای سازه به صورت تابعی صریح، از مزیت های روش اجزا متحرک شکل‌ پذیر می باشند. با توجه به ماهیت تکرار شونده و تناوبی ریز ساختار این مواد، طرح بهینه ی یک سلول در چارچوب مسئله ی بهینه یابی مکانیزم های سازگار تعریف شد. برای حل مسئله‌ ی بهینه یابی، از روش بهینه یابی مرتبه یک مجانب های متحرک استفاده شد. گام اصلی در این دسته روش ها به دست آوردن گرادیان تابع هدف و قیود نسبت به متغیر های طراحی است. در این تحقیق، برای محاسبه ی گرادیان تابع هدف، از ایده ی متفاوت مشتق توپولوژیک استفاده شده است. کارآیی روش پیشنهادی در طرح نهایی به دست آمده نشان داده شده است.

کلیدواژه‌ها

موضوعات


[1] Wojciechowski, K. W., "Two-dimensional Isotropic System with a Negative Poisson Ratio", Physics Letters A, Vol. 137, pp. 60-64, (1989).
 
[2] Yang, W., Li, Z.M., Shi, W., Xie, B.H., and Yang, M.B., "Review on Auxetic Materials",  Journal of Materials Science, Vol. 39, pp. 3269-3279, (2004).
 
[3] Voigt, W., "Bestimmung Oder Elasticitätsconstanten Einiger Quasi‐iostroper Metalle Durch Langsame Schwingungen von Stäben", Annalen Der Physik , Vol. 284, pp. 674-707, (1893).
 
[4] Williams, J.L., and Lewis, J.L., "Properties and an Anisotropic Model of Cancellous Bone From the Proximal Tibial Epiphysis", Biomechanical Engeneering, Vol. 104, pp. 50-56, (1982).
 
[5] Alderson, A., and Alderson, K.L., "Auxetic Materials", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 221, pp. 565-575, (2007).
 
[6] Mir, M., Ali, M.N., Sami, J., and Ansari, U., "Review of Mechanics and Applications of Auxetic Structures", Advances in Materials Science and Engineering, Vol. 2014, pp. 1-17, (2014).
 
[7] Wang, Z., Zulifqar, A., and Hu, H., "Advanced Composite Materials for Aerospace Engineering", First Edition, Woodhead Publishing Is an Imprint of Elsevier, Cambridge, England,  doi.org/10.1016/C2014-0-00846-5, pp. 213-240, (2016).            
 
[8] Lakes, R., "Foam Structures with a Negative Poisson's Ratio", Science, Vol. 235, pp.1038-1040, (1987).
 
[9] Evans, K.E., Nkansah, M.A., and Hutchinson, I.J., "Auxetic Foams: Modelling Negative Poisson's Ratios",  Acta Metallurgica Et Materialia, Vol. 42, pp. 1289-1294, (1994).
 
[10] Li, Y., and Zeng, C., "On the Successful Fabrication of Auxetic Polyurethane Foams: Materials Requirement, Processing Strategy and Conversion Mechanism", Polymer, Vol. 87, pp. 98-107, (2016).
 
[11] Stetsenko, M.S., "Determining the Elastic Constants of Hydrocarbons of Heavy Oil Products using Molecular Dynamics Simulation Approach",  Journal of Petroleum Science and Engineering, Vol. 126, pp. 124-130, (2015).
 
[12] Gatt, R., Wood, M.V., Gatt, A., Zarb, F., Formosa, C., Azzopardi, K.M., Casha, A., Agius, T.P., Schembri-Wismayer, P., Attard, L., and Chockalingam, N., "Negative Poisson’s Ratios in Tendons: an Unexpected Mechanical Response", Acta Biomaterialia, Vol. 24, pp. 201-208, (2015).
 
[13] Borovinšek, M., Novak, N., Vesenjak, M., Ren, Z., and Ulbin, M., "Designing 2D Auxetic Structures using Multi-objective Topology Optimization", Materials Science and Engineering: A, Vol. 795, Article Number. 139914, (2020).
 
[14] Rawal, A., Kumar, V., Saraswat, H., Weerasinghe, D., Wild, K., Hietel, D., and Dauner, M., "Creating Three-dimensional (3D) Fiber Networks with Out-of-plane Auxetic Behavior Over Large Deformations", Journal of Materials Science, Vol. 52(5), pp. 2534-2548, (2017).
 
[15] Javadi, A.A., Faramarzi, A., and Farmani, R., "Design and Optimization of Microstructure of Auxetic Materials", Engineering Computations, Vol. 29, pp. 260-276, (2012).
 
[16] Kaminakis, N.T., Drosopoulos, G.A., and Stavroulakis, G.E., "Design and Verification of Auxetic Microstructures using Topology Optimization and Homogenization", Archive of Applied Mechanics, Vol. 85, pp. 1289-1306, (2015).
 
[17] Gao, J., Xue, H., Gao, L., and Luo, Z., "Topology Optimization for Auxetic Metamaterials Based on Isogeometric Analysis", Computer Methods in Applied Mechanics and Engineering, Vol. 352, pp. 211-236, (2019).
 
[18] Wang, Y., Zhao, W., Zhou, G., and Wang, C., "Analysis and Parametric Optimization of a Novel Sandwich Panel with Double-V Auxetic Structure Core under Air Blast Loading", International Journal of Mechanical Sciences, Vol. 142, pp. 245-254, (2018).
 
[19] Wang, F., "Systematic Design of 3D Auxetic Lattice Materials with Programmable Poisson’s Ratio for Finite Strains", Journal of the Mechanics and Physics of Solids, Vol. 114, pp. 303-318, (2018).
 
[20] Zheng, Y., Wang, Y., Lu, X., Liao, Z., and Qu, J., "Evolutionary Topology Optimization for Mechanical Metamaterials with Auxetic Property", International Journal of Mechanical Sciences, Vol. 179, Article Number. 105638, (2020).
 
[21] Rozvany, G.I., "A Critical Review of Established Methods of Structural Topology Optimization", Structural and Multidisciplinary Optimization, Vol. 37, pp. 217-237, (2009).
 
[22] Bendsøe, M.P., and Kikuchi, N., "Generating Optimal Topologies in Structural Design using a Homogenization Method", Computer Methods in Applied Mechanics and Engineering, Vol. 71, pp. 197-224, (1988).
 
[23] Bndsøe, M.P., "Optimal Shape Design as a Material Distribution Problem", Structural Optimization, Vol. 1, pp. 193-202, (1989).
 
[24] Allaire, G., Jouve, F., and Toader, A.M., "Structural Optimization using Sensitivity Analysis and a Level-set Method", Journal of Computational Physics, Vol. 194, pp. 363-393, (2004).
 
[25] Du, Y., Luo, Z., Tian, Q., and Chen, L., "Topology Optimization for Thermo-mechanical Compliant Actuators using Mesh-free Methods", Engineering Optimization, Vol. 41, pp. 753-772, (2009).
 
[26] Kolken, H.M., and Zadpoor, A.A., "Auxetic Mechanical Metamaterials", RSC Advances, Vol. 7, pp. 5111-5129, (2017).
 
[27] Guo, X., Zhang, W., and Zhong, W., "Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework", Journal of Applied Mechanics, Vol. 81, Article Number. 081009, (2014).
 
[28] Zhang, W., Yuan, J., Zhang, J., and Guo, X., "A New Topology Optimization Approach Based on Moving Morphable Components (MMC) and the Ersatz Material Model", Structural and Multidisciplinary Optimization, Vol. 53, pp. 1243-1260, (2016).
 
[29] Zhang, W., Li, D., Yuan, J., Song, J., and Guo, X., "A New Three-dimensional Topology Optimization Method Based on Moving Morphable Components (MMCs)", Computational Mechanics, Vol. 59, pp. 647-665, (2017).
 
[30] Howell, L.L., "Compliant Mechanisms", 21st Century Kinematics, First Edition,  Springer, London, pp. 189-216, (2013).
 
[31] Ananthasuresh, G.K., and Howell, L.L., "Mechanical Design of Compliant Microsystems—A Perspective and Prospects", Journal of Mechanical Design, Vol. 127, pp. 736-738, (2005).
 
[32] Albanesi, A.E., Fachinotti, V.D., and Pucheta, M.A., "A Review on Design Methods for Compliant Mechanisms", Mecánica Computacional, Vol. 29, pp. 59-72, (2010).
 
[33] Kota, S., Joo, J., Li, Z., Rodgers, S.M., and Sniegowski, J., "Design of Compliant Mechanisms: Applications to MEMS", Analog Integrated Circuits and Signal Processing, Vol. 29, pp. 7-15, (2001).
 
[34] Eschenauer, H.A., Kobelev, V.V., and Schumacher, A., "Bubble Method for Topology and Shape Optimization of Structures", Structural Optimization, Vol. 8, pp. 42-51, (1994).
 
[35] Novotny, A.A., Feijóo, R.A., Taroco, E., and Padra, C., "Topological Sensitivity Analysis for Three-dimensional Linear Elasticity Problem", Computer Methods in Applied Mechanics and Engineering, Vol. 196, pp. 4354-4364, (2007).
 
[36] Novotny, A.A., and Sokołowski, J., "Topological Derivatives in Shape Optimization", First Edition, Springer Berlin, Heidelberg, (2012). 
        
[37] Sokolowski, J., and Zochowski, A., "On the Topological Derivative in Shape Optimization", SIAM Journal on Control and Optimization, Vol. 37, pp. 1251-1272, (1999).
 
[38] He, L., Kao, C.Y., and Osher, S., "Incorporating Topological Derivatives into Shape Derivatives Based Level-set Methods", Journal of Computational Physics, Vol. 225, pp. 891-909, (2007).
 
[39] Deng, S., and Suresh, K., "Multi-constrained 3D Topology Optimization via Augmented Topological Level-set", Computers and Structures, Vol. 170, pp. 1-12, (2016).
 
[40] Ansola, R., Veguería, E., Canales, J., and Tárrago, J.A., "A Simple Evolutionary Topology Optimization Procedure for Compliant Mechanism Design", Finite Elements in Analysis and Design, Vol. 44, pp. 53-62, (2007).
 
[41] Krishnakumar, A., and Suresh, K., "Hinge-free Compliant Mechanism Design via the Topological Level-set", Journal of Mechanical Design, Vol. 137, Article Number. 031406, (2015).
 
[42] Takalloozadeh, M., and Yoon, G.H., "Implementation of Topological Derivative in the Moving Morphable Components Approach", Finite Elements in Analysis and Design, Vol. 134, pp. 16-26, (2017).
 
[43] Svanberg, K., "The Method of Moving Asymptotes—A New Method for Structural Optimization", International Journal for Numerical Methods in Engineering, Vol. 24, pp. 359-373, (1987).
 
[44] Sigmund, O., "On the Design of Compliant Mechanisms using Topology Optimization", 
Mechanics of Structures and Machines, doi.org/10.1080/08905459708945415, Vol. 25(4), pp. 493-524, (1997).