مدلسازی و تحلیل سایت جامع تولید همزمان حرارت و توان از دیدگاه اگزرژواکونومیک در یک مورد مطالعاتی چهار مگاواتی

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 گروه تبدیل انرژی، دانشکده مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد تاکستان، تاکستان

2 گروه تبدیل انرژی، دانشکده مهندسی مکانیک، دانشگاه آزاد اسلامی واحد تاکستان، تاکستان

چکیده

در طراحی و تحلیل سایت جامع تولید همزمان حرارت و توان، نحوه‌ی چیدمان تجهیزات در فرآیند تولید اهمیت ویژه‌ای دارند.
در ابتدا چیدمان توربین‌های بخار بین سطوح بخار برای مورد مطالعاتی تعیین شده و درصورت تامین نشدن توان مورد نیاز درسایت جامع توسط توربین‌های بخار استفاده از توربین گازی یا توربین کندانس برای تولید توان اضافی بررسی می‌گردد.
درنهایت، استفاده ترکیبی از چیدمان توربین‌های بخار فشار برگشتی درکنار سامانه توربین گازی، از دیدگاه اگزرژواکونومیک به عنوان بهترین چیدمان پیشنهاد شدند.

کلیدواژه‌ها

موضوعات


[1] Raissi, K., "Total Site Integration", Ph.D. Thesis, University of Manchester Institute of
Science and Tecnology, Department of Process Integration, Manchester, UK, (1994).
[2] Klemes, J., "Sustainability in the Process Industry", McGraw-Hill, New York, ( 2011).
[3] Klemeš, J., Dhole, V.R., Raissi, K., Perry, S.J., and Puigjaner, L., "Targeting and Design
Methodology for Reduction of Fuel, Power and CO2 on Total Sites", Applied Thermal
Engineering, Vol. 17, No. 8-10, pp. 993-1003, (1997).
[4] Smith, R., "Chemical Process: Design and Integration", John Wiley, West Sussex, (2005).
[5] Meckler, M., and Hyman, L.B., "Sustainable On-site CHP Systems", McGraw-Hill, New
York, ( 2010).
[6] Dueblin, D., and Steinhauser, A., "Utilization of Biogas for the Generation of Electric Power
and Heat", WILEY-VHC,(2008).
[7] Dhole, V. R., and Linnhoff, B., "Total Site Targets for Fuel, Co-generation, Emissions, and
Cooling", Computers & Chemical Engineering, Vol. 17, pp. 101-109. (1993).
[8] Walmsley, T.G., Varbanova, P.S., Philipp, M., and Klemeš, J.J., "Total Site Utility Systems
Structural Design Considering Electricity Price Fluctuations", Computer Aided Chemical
Engineering. Vol. 44, pp. 1159-1164, Elsevier, (2018).
[9] Ghannadzadeh, A., Perry, S., and Smith, R., "Cogeneration Targeting for Site Utility
Systems", Applied Thermal Engineering, Vol. 43, pp. 60-66, (2012).
[10] Kapil, A., Bulatov, I., Smith, R., and Kim, J.K., "Site-wide Low-grade Heat Recovery with
a New Cogeneration Targeting Method", Chemical Engineering Research and Design,
Vol. 90, No. 5, pp. 677-689, (2012).
[11] Ghazi, M., Amidpour, M., Abbaspour, M., and Farzaneh, H., "Developing of Constructal
Theory Concept to the Total Site Cogeneration Heat and Power Retrofit", International
Journal of Exergy, Vol. 17, No. 2, pp. 171-191, (2015).
[12] Khoshgoftar Manesh, M.H., Abadi, S. K., Amidpour, M., and Hamedi, M. H., "A New
Targeting Method for Estimation of Cogeneration Potential and Total Annualized Cost in
Process Industries", Chemical Engineering Research and Design, Vol. 91, No. 6, pp. 1039-
1049, (2013).
[13] Khoshgoftar Manesh, M.H., Navid, P., Baghestani, M., Abadi, S. K., Rosen, M. A.,
Blanco, A. M., and Amidpour, M., "Exergoeconomic and Exergoenvironmental
Evaluation of the Coupling of a Gas Fired Steam Power Plant with a Total Site Utility
System", Energy Conversion and Management, Vol. 77, pp. 469-483, (2014).
[14] Khoshgoftar Manesh, M.H., Amidpour, M., Abadi, S. K., and Hamedi, M. H., "A New
Cogeneration Targeting Procedure for Total Site Utility System", Applied Thermal
Engineering, Vol. 54, No. 1, pp. 272-280, (2013).
[15] Varbanov, P. S., Doyle, S., and Smith, R., "Modelling and Optimization of Utility
Systems", Chemical Engineering Research and Design, Vol. 82, No. 5, pp. 561-578,
(2004).
[16] Ahmadi, P., Dincer, I., and Rosen, M. A., "Exergy, Exergoeconomic and Environmental
Analyses and Evolutionary Algorithm Based Multi-objective Optimization of Combined
Cycle Power Plants", Energy, Vol. 36, No. 10, pp. 5886-5898, (2011).
[17] Ameri, M., and Enadi, N., "Thermodynamic Modeling and Second Law Based
Performance Analysis of a Gas Turbine Power Plant (Exergy and Exergoeconomic
Analysis)", Journal of Power Technologies, Vol. 92, No. 3, pp. 183-191, (2012).
[18]Shayan, E., Zare, V., and Mirzaee, I., "On the use of Different Gasification Agents in a
Biomass Fueled SOFC by Integrated Gasifier: A Comparative Exergo-economic
Evaluation and Optimization", Energy, Vol. 171, pp. 1126-1138, (2019).
[19] Dev, N., Kachhwaha, S.S., and Attri, R., "Exergy Analysis and Simulation of a 30MW
Cogeneration Cycle", Frontiers of Mechanical Engineering, Vol. 8, No. 2, pp. 169-180,
(2013).
[20] Pirmohamadi, A., Ghazi, M., and Nikian, M., "Optimal Design of Cogeneration Systems
in Total Site using Exergy Approach", Energy, Vol. 166, pp. 1291-1302, (2019).
[21] Ameri, M., Ahmadi, P., and Hamidi, A., "Energy, Exergy and Exergoeconomic Analysis
of a Steam Power Plant: A Case Study", International Journal of Energy Research Int. J.
Energy Res, Vol. 33, pp. 499-512, (2009).
[22] Dejan, M., Stojanović, B., Jelena, J., and Ignjatović, M. G., "Exergy and Exergoeconomic
Analysis of a Steam Boiler", Thermal Science, Suppl. Vol. 22, Vol. 5, pp. 1601-1612,
(2018).
[23] Unal, F., and Ozkan, D., "Application of Exergoeconomic Analysis for Power Plants",
Thermal Science Vol. 22 .6 Part A, pp. 2653-2666, (2018).
[24] Valencia Ochoa, G., Piero Rojas, J., and Duarte Forero, J., "Advance Exergo-economic
Analysis of a Waste Heat Recovery System using ORC for a Bottoming Natural Gas
Engine", Energies, Vol. 13, No. 1, pp. 267, https://doi.org/10.3390/en13010267, (2020).
[25] Bejan, A., and Tsatsaronis, G., "Thermal Design and Optimization", John Wiley & Sons,
New York, (1996) .
[26] Shamsi, S., and Omidkhah, M. R., "Optimization of Steam Pressure Levels in a Total Site
using a Thermoeconomic Method", Energies, Vol. 5, No. 3, pp. 702-717, (2012).
[27] Morales, O.A., "Design and Optimisation of Flexible Utility Systems", PhD Thesis,
Manchester University, Manchester, UK, (2005).