آنالیز انرژی و اگزرژی دو پیکربندی‌ چرخه رانکین آلی در بازیابی گرمای اتلافی موتور احتراق‌داخلی

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 استادیار، گروه خلبانی، دانشکده مهندسی و پرواز، دانشگاه امام علی (ع)، تهران، ایران

2 استادیار گروه خلبانی، دانشکده مهندسی و پرواز، دانشگاه امام علی، تهران، ایران

چکیده

از تمام انرژی موجود در سوخت، تنها 30% از آن به انرژی مفید تبدیل شده و باقیمانده آن از طریق گازهای خروجی از موتور و مایع خنک‌کننده موتور اتلاف می‌گردد. در این مقاله آنالیز انرژی و اگزرژی دو پیکربندی مختلف از سیکل ارگانیک رنکین با دو سیال عامل R113 و R123 با هدف بازیابی گرمای اتلافی از گازهای خروجی از یک موتور احتراق داخلی شش سیلندر (در حالت عملکردی تمام‌بار) انجام شده و همچنین بهینه‌سازی عملکرد سیکل‌های مذکور با استفاده از روش آنالیز حساسیت به منظور یافتن دما و فشار کاری بهینه دو سیکل صورت گرفته‌است.

کلیدواژه‌ها

موضوعات


[1] Kim,Y.M., Shin, D.G., Kim,C.G., and Cho,G.B., "Single-loop Organic Rankine Cycles for Engine Waste Heat Recovery using Both Low-and High-temperature Heat Sources", Energy, Vol. 96, pp. 482-494, (2016).
[2]Sharma, S., Dwivedi, V., and Pandit, S., "Exergy Analysis of Single‐stage and Multi Stage Thermoelectric Cooler", International Journal of Energy Research, Vol. 38, No. 2, pp. 213-222, (2014).
[3] Liang, X., Wang, X., Shu, G., Wei, H., Tian, H., and Wang, X., "A Review and Selection of Engine Waste Heat Recovery Technologies using Analytic Hierarchy Process and Grey Relational Analysis", International Journal of Energy Research , Vol. 39, No. 4, pp. 453-471, (2015).
[4] Patel, P.S., and Doyle, E.F., "Compounding the Truck Diesel Engine with an Organic Rankine-cycle System", SAE Technical Paper, Vol. 2, pp. 1-16, (1976).
[5] Bailey, M.M., "Comparative Evaluation of Three Alternative Power Cycles for Waste Heat Recovery from the Exhaust of Adiabatic Diesel Engines", Nasa TM. 86953, pp. 1-26, (1985).
[6] Chammas, R., and Clodic, El D., "Combined Cycle for Hybrid Vehicles", SAE Technical Paper, Vol. 4, pp. 1-12, (2005).
[7] Arias, D.A., Shedd, T.A., and Jester, R.K., "Theoretical Analysis of Waste Heat Recovery from an Internal Combustion Engine in a Hybrid Vehicle", SAE Transaction, Vol. 115, Section. 3, pp. 777-784, (2006).
[8] Mago, P., Chamra, L., and Somayaji, C., "Performance Analysis of Different Working Fluids for use in Organic Rankine Cycles", Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 221, No. 3, pp. 255-263, (2007).
[9] Ringler, J., Seifert, M., Guyotot, V., and Hübner, W., "Rankine Cycle for Waste Heat Recovery of IC Engines", SAE International Journal of Engines, Vol. 2, No. 1, pp. 67-76, (2009).
[10] Srinivasan, K.K., Mago, P.J., and Krishnan, S.R., "Analysis of Exhaust Waste Heat Recovery from a Dual Fuel Low Temperature Combustion Engine using an Organic Rankine Cycle", Energy, Vol. 35, No. 6, pp. 2387-239, (2010).
[11] Vaja, I., and Gambarotta, A., "Internal Combustion Engine (ICE) Bottoming with Organic Rankine Cycles (ORCs)", Energy, Vol. 35, No. 2, pp. 1084-1093, (2010).
[12] Quoilin, S., Declaye, S., Tchanche, B.F., and Lemort, V., "Thermo-economic Optimization of Waste Heat Recovery Organic Rankine Cycles", Applied Thermal Engineering", Vol. 31, No. 14-15, pp. 2885-2893, (2011).
[13] He, M., Zhang, X., Zeng, K., and Gao, K., "A Combined Thermodynamic Cycle used for Waste Heat Recovery of Internal Combustion Engine", Energy, Vol. 36, No. 12, pp. 6821-6829, (2011).
[14] Katsanos, C., Hountalas, D., and Pariotis, E., "Thermodynamic Analysis of a Rankine Cycle Applied on a Diesel Truck Engine using Steam and Organic Medium", Energy Conversion and Management", Vol. 60, pp. 68-76, (2012).
[15] Peng, Z., Wang, T., He, Y., Yang, X., and Lu, L., "Analysis of Environmental and Economic Benefits of Integrated Exhaust Energy Recovery (EER) for Vehicles", Applied energy, Vol. 105, pp. 238-243, (2013).
[16] Shu, G., Wang, X., and Tian, H., "Theoretical Analysis and Comparison of Rankine Cycle and Different Organic Rankine Cycles as Waste Heat Recovery System for a Large Gaseous Fuel Internal Combustion Engine", Applied Thermal Engineering, Vol. 108, pp. 525-537, (2016).
[17] Yang, F., Zhang, H., Yu, Z., Wang, E., Meng, Liu, F. H., and Wang, J., "Parametric Optimization and Heat Transfer Analysis of a Dual Loop ORC (Organic Rankine Cycle) System for CNG Engine Waste Heat Recovery", Energy, Vol. 118, pp. 753-775, (2017).
[18] Mohammadkhani, F., Yari, M., and Ranjbar, F., "A zero-dimensional Model for Simulation of a Diesel Engine and Exergoeconomic Analysis of Waste Heat Recovery from Its Exhaust and Coolant Employing a High-temperature Kalina Cycle", Energy Conversion and Management, Vol. 198, pp. 111782, (2019).
[19] Mohammadkhani, F., and Yari, M,. "A 0D Model for Diesel Engine Simulation and Employing a Transcritical Dual Loop Organic Rankine Cycle (ORC) for Waste Heat Recovery from Its Exhaust and Coolant: Thermodynamic and Economic Analysis", Applied Thermal Engineering", Vol. 150, pp. 329-347, (2019).
[20] Liu, X., Manh, Q.N., Jianchu, C. L., and Maogang, H., "A Novel Waste Heat Recovery System Combing Steam Rankine Cycle and Organic Rankine Cycle for Marine Engine", Journal of Cleaner Production, Vol. 265, pp. 121-135, (2020).
[21] Mohammed, A.G., Mosleh, M. M., Wael, E., and Nader, R.A., "Performance Analysis of Supercritical ORC Utilizing Marine Diesel Engine Waste Heat Recovery", Alexandria Engineering Journal", Vol. 59, No. 2, pp. 893-904, (2020).
[22] Zhi, Li.H., Peng, H., Long-Xiang, C., and Gang, Z., "Performance Analysis and Optimization of Engine Waste Heat Recovery with an Improved Transcritical-subcritical Parallel Organic Rankine Cycle Based on Zeotropic Mixtures", Applied Thermal Engineering, Vol. 181, pp. 185-196, (2020).
[23] Li, G., "Organic Rankine Cycle Performance Evaluation and Thermoeconomic Assessment with Various Applications Part I: Energy and Exergy Performance Evaluation", Renewable and Sustainable Energy Reviews, Vol. 53, pp. 477-499, (2016).
[24] Abdolalipouradl, M., Khalilarya, Sh., and afarmadar, S., "Energy and Exergy Analysis of a New Power, Heating, Oxygen and Hydrogen Cogeneration Cycle Based on the Sabalan Geothermal Wells", International Journal of Engineering, Vol. 32, pp. 445-450, (2019).
[25] Abdolalipouradl, M., Mohammadkhani, F., Khalilarya, Sh., and Jafarmadar, S., "Thermodynamic Analysis of New Cogeneration Cycle Based on Gaynarje Hotspring", International Journal of Engineering, Vol. 33, pp. 1149-1155, (2020).
[26] Behzadi, A., Gholamian, E., Houshfar, E., and Habibollahzade, A., "Multi-objective Optimization and Exergoeconomic Analysis of Waste Heat Recovery from Tehran's waste-to-energy Plant Integrated with an ORC Unit", Energy, Vol. 160, pp. 1055-1068, (2018).
[27] Abdolalipouradl, M., Khalilarya, Sh., and Jafarmadar, S., "Exergoeconomic Analysis of a Novel Integrated Transcritical CO2 and Kalina 11 Cycles from Sabalan Geothermal Power Plant", Energy Conversion and Management, Vol. 195, pp. 420-435, (2019).
[28] Abdolalipouradl, M., Mohammadkhani , F., Khalilarya, Sh., and Yari, M., "Thermodynamic and Exergoeconomic Analysis of Two Novel tri-generation Cycles for Power, Hydrogen and Freshwater Production from Geothermal Energy", Energy Conversion and Management, Vol. 226, pp. 113-128, (2020).
[29] Abdolalipouradl, M., Mohammadkhani, F., and Khalilarya, Sh., "A Comparative Analysis of Novel Combined Flash-binary Cycles for Sabalan Geothermal Wells: Thermodynamic and Exergoeconomic Viewpoints", Energy, Vol. 209, pp. 118-135, (2020).
[30] Dai, Y., Wang, J., and Gao, L., "Parametric Optimization and Comparative Study of Organic Rankine Cycle (ORC) for Low Grade Waste Heat Recovery", Energy Conversion and Management, Vol. 50, No. 3, pp. 576-582, (2009).