تحلیل پایداری حرارتی پوسته استوانه‌ای تقویت شده با ورق‌های گرافن GPL با استفاده از روش مربعات تفاضلی

نوع مقاله : مقاله علمی پژوهشی

نویسنده

استادیار، گروه خلبانی، دانشکده مهندسی و پرواز، دانشگاه امام علی (ع)، تهران، ایران

چکیده

مقاله حاضر به تحلیل کمانش حرارتی پوسته کامپوزیتی استوانه‌ای تقویت شده با ورق‌های گرافن GPLs می‌پردازد. مقدار کسر حجمی گرافن‌ها به صورت تابعی مدرج FG تغییر می‌کند. خواص مؤثر الاستیک پوسته با استفاده از قانون هالپین-سای به دست آمده است. معادلات پوسته با استفاده از تئوری مرتبه اول تغییر شکل برشی، تئوری غیرخطی هندسی ون-کارمن و فرضیات دانل استخراج شده‌اند. معادلات تعادل پس از تحلیل پیش‌کمانش توسط روش مربعات تفاضلی تعمیم‌یافته GDQ جداسازی شده و حل ‌می‌گردد. پس از صحه‌گذاری بر روش حل استفاده شده، نتایج جدید برای نشان دادن اثر پارامترهای مختلف بر دمای کمانش بحرانی نشان داده شده‌است.

کلیدواژه‌ها

موضوعات


[1] Ebrahimi, F., and Dabbagh, A., “A Comprehensive Review on Modeling of
Nanocomposite Materials and Structures”, Journal of Computational Applied Mechanics,
Vol. 50, pp. 197-209, (2019).
[2] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V.,
Grigorieva, I.V., and Firsov, A.A., “Electric Field Effect in Atomically Thin Carbon
Films”, Science, Vol. 306, pp. 666-669, (2004).
[3] Reddy, C.D., Rajendran, S., and Liew, K.M., “Equilibrium Configuration and Continuum
Elastic Properties of Finite Sized Graphene”, Nanotechnology, Vol. 17, pp. 864-870,
(2006).
[4] Scarpa, F., Adhikari, S., and Phani, A.S., “Effective Elastic Mechanical Properties of
Single Layer Graphene Sheets”, Nanotechnology, Vol. 20, Art No. 065709, (2009).
[5] Cadelano, E., Palla, P.L., Giordano, S., and Colombo, L., “Nonlinear Elasticity of
Monolayer Graphene”, Physical Review Letters, Vol. 102, Art No. 235502, (2009).
[6] Ni, Z., Bu, H., Zou, M., Yi, H., Bi, K., and Chen, Y., “Anisotropic Mechanical Properties
of Graphene Sheets from Molecular Dynamics”, Physica B: Condensed Matter, Vol. 405,
pp. 1301-1306, (2010).
[7] Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z., and Koratkar, N., “Enhanced
Mechanical Properties of Nanocomposites at Low Graphene Content”, ACS nano, Vol. 3,
pp. 3884-3890, (2009).
[8] Yang, J., Wu, H., and Kitipornchai, S., “Buckling and Postbuckling of Functionally
Graded Multilayer Graphene Platelet-reinforced Composite Beams”, Composite
Structures, Vol. 161, pp. 111-118, (2017).
[9] Wu, H., Yang, J., and Kitipornchai, S., “Dynamic Instability of Functionally Graded
Multilayer Graphene Nanocomposite Beams in Thermal Environment”, Composite
Structures, Vol. 162, pp. 244-254, (2017).
[10] Kitipornchai, S., Chen, D., and Yang, J., “Free Vibration and Elastic Buckling of
Functionally Graded Porous Beams Reinforced by Graphene Platelets”, Materials and
Design, Vol. 116, pp. 656-665, (2017).
[11] Song, M., Chen, L., Yang, J., Zhu, W., and Kitipornchai, S., “Thermal Buckling and
Postbuckling of Edge-cracked Functionally Graded Multilayer Graphene
Nanocomposite Beams on an Elastic Foundation”, International Journal of Mechanical
Sciences, Vol. 161, pp. 105040, (2019).
[12] Yang, Z., Yang, J., Liu, A., and Fu, J., “Nonlinear In-plane Instability of Functionally
Graded Multilayer Graphene Reinforced Composite Shallow Arches”, Composite
Structures, Vol. 204, pp. 301-312, (2018).
[13] Huang, Y., Yang, Z., Liu, A., and Fu, J., “Nonlinear Buckling Analysis of Functionally
Graded Graphene Reinforced Composite Shallow Arches with Elastic Rotational
Constraints under Uniform Radial Load”, Materials, Vol. 11, pp. 910, (2018).
[14] Song, M., Yang, J., Kitipornchai, S., and Zhu, W., “Buckling and Postbuckling of
Biaxially Compressed Functionally Graded Multilayer Graphene Nanoplateletreinforced
Polymer Composite Plates”, International Journal of Mechanical Sciences,
Vol. 131, pp. 345-355, (2017).
[15]Wu, H., Kitipornchai, S., and Yang, J., “Thermal Buckling and Postbuckling of
Functionally Graded Graphene Nanocomposite Plates”, Materials and Design, Vol. 132,
pp. 430-441, (2017).
[16]Yang, J., Dong, J., and Kitipornchai, S., “Unilateral and Bilateral Buckling of
Functionally Graded Corrugated Thin Plates Reinforced with Graphene Nanoplatelets”,
Composite Structures, Vol. 209, pp. 789-801, (2019).
[17] Li, Q., Wu, D., Chen, X., Liu, L., Yu, Y., and Gao, W., “Nonlinear Vibration and
Dynamic Buckling Analyses of Sandwich Functionally Graded Porous Plate with
Graphene Platelet Reinforcement Resting on Winkler-Pasternak Elastic Foundation”,
International Journal of Mechanical Sciences, Vol. 148, pp. 596-610, (2018).
[18] Gholami, R., and Ansari, R., “Nonlinear Stability and Vibration of Pre/post-buckled
Multilayer FG-GPLRPC Rectangular Plates”, Applied Mathematical Modelling, Vol.
65, pp. 627-660, (2019).
[19] Kiani, Y., and Mirzaei, M., “Isogeometric Thermal Postbuckling of FG-GPLRC
Laminated Plates”, Steel and Composite Structures, Vol. 32, pp. 821-832, (2019).
[20] Kiani, Y., “NURBS-based Thermal Buckling Analysis of Graphene Platelet Reinforced
Composite Laminated Skew Plates”, Journal of Thermal Stresses, Vol. 43, Issue. 1, pp.
90-108, (2020).
[21] Wang, Y., Feng, C., Zhao, Z., and Yang, J., “Eigenvalue Buckling of Functionally
Graded Cylindrical Shells Reinforced with Graphene Platelets (GPL)”, Composite
Structures, Vol. 202, pp. 38-46, (2018).
[22] Wang, Y., Feng, C., Zhao, Z., Lu, F., and Yang, J., “Torsional Buckling of Graphene
Platelets (GPLs) Reinforced Functionally Graded Cylindrical Shell with Cutout”,
Composite Structures, Vol. 197, pp. 72-97, (2018).
[23] Liu, D., Kitiporchai, S., Chen, W., and Yang, J., “Three-dimensional Buckling and Free
Vibration Analyses of Initially Stressed Functionally Graded Graphene Reinforced
Composite Cylindrical Shell”, Composite Structures, Vol. 189, pp. 560-569, (2018).
[24] Zhou, Z., Ni, Y., Tong, Z., Zhu, S., and Sun, J., “Accurate Nonlinear Buckling Analysis
of Functionally Graded Porous Graphene Platelet Reinforced Composite Cylindrical
Shells”, International Journal of Mechanical Sciences, Vol. 151, pp. 537-550, (2019).
[25] Haboussi, M., Sankar, A., and Ganapathi, M., “Nonlinear Axisymmetric Dynamic
Buckling of Functionally Graded Graphene Reinforced Porous Nanocomposite Spherical
Caps”, Mechanics of Advanced Materials and Structures, Vol. 28, Issue. 2, pp. 127-140,
(2021).
[26] Shen, H.S., “Thermal Buckling and Postbuckling Behavior of Functionally Graded
Carbon Nanotube-reinforced Composite Cylindrical Shells”, Composites Part B:
Engineering, Vol. 43, pp. 1030-1038, (2012).
[27] Shen, H.S., and Xiang, Y., “Thermal Buckling and Postbuckling Behavior of FG-GRC
Laminated Cylindrical Shells with Temperature-dependent Material Properties”,
Meccanica, Vol. 54, pp. 283-297, (2019).
[28] Reddy, J.N., "Theory and analysis of elastic plates and shells", CRC Press, (2006).
[29] Eslami, M.R., "Buckling and Postbuckling of Beams, Plates, and Shells", Springer,
Switzerland, (2018).
[30] Tornabene, F., Viola, E., and Inman, D. J., “2-D Differential Quadrature Solution for
Vibration Analysis of Functionally Graded Conical, Cylindrical Shell and Annular Plate
Structures”, Journal of Sound and Vibration, Vol. 328, pp. 259-290, (2009).
[31] Shen, H.S., “Thermal Postbuckling Behavior of Functionally Graded Cylindrical Shells
with Temperature-dependent Properties”, International Journal of Solids and
Structures, Vol. 41, pp. 1961-1974, (2004).