تحلیل انرژی، اگزرژی و اقتصادی یک سیکل بهبود یافته تبرید هیبریدی آبشاری جذبی-تراکمی

نوع مقاله : مقاله علمی پژوهشی

نویسنده

گروه مکانیک، دانشکده فنی و مهندسی، دانشگاه آیت ا.. بروجردی، بروجرد، ایران

چکیده

در این مقاله، استفاده از یک کمپرسور کمکی، به منظور بهبود عملکرد یک سیکل تبرید آبشاری جذبی-تراکمی از منظر ترمودینامیکی و اقتصادی مورد بررسی قرار گرفته است. نتایج نشان می دهد که استفاده از کمپرسور کمکی بین ژنراتور و کندانسور، ضریب عملکرد و راندمان قانون دوم سیکل را به ترتیب 68 % و 24 % افزایش داده و هزینه های کلی سیستم را 31 % کاهش می دهد. در مقابل، قرارگیری کمپرسور بین اواپراتور و جاذب موجب افزایش 79 درصدی ضریب عملکرد، افزایش 31 درصدی راندمان قانون دوم و کاهش 40 درصدی هزینه های سیکل می گردد.

کلیدواژه‌ها

موضوعات


[1] Jain, V., Sachdeva, G., Kachhwaha, S.S., and Patel, B. “Thermo-economic and
Environmental Analyses Based Multi-objective Optimization of Vapor Compression–
absorption Cascaded Refrigeration System using NSGA-II technique”, Energy Conversion
and Management, Vol. 113, pp. 230-242, (2016).
[2] Fan, Y., Luo, L., and Souyri, B., “Review of Solar Sorption Refrigeration Technologies:
Development and Applications”, Renewable and Sustainable Energy Reviews, Vol. 11, pp.
1758-1775, (2007).
[3] Cimsit, C., Ozturk, I.T., and Kincay, O., “Thermoeconomic Optimization of LiBr/H2OR134a
Compression-absorption Cascade Refrigeration Cycle”, Applied Thermal
Engineering, Vol. 76, pp. 105-115, (2015).
[4] Colorado, D., and Rivera, W., “Performance Comparison between a Conventional Capor
Compression and Compression-absorption Single-stage and Double-stage Systems used for
Refrigeration”, Applied Thermal Engineering,Vol. 87, pp. 273-285, (2015).
[5] Colorado, D., and Velázquez, V.M., “Exergy Analysis of a Compression–absorption
Cascade System for Refrigeration”, International Journal of Energy Research, Vol. 37, pp.
1851-1865, (2013).
[6] Jain, V., Kachhwaha, S.S., and Sachdeva, G., “Thermodynamic Performance Analysis of a
Vapor Compression–absorption Cascaded Refrigeration System”, Energy Conversion and
Management,Vol. 75, pp. 685-700, (2013).
[7] Kim, J. S., Ziegler, F., and Lee, H., “Simulation of the Compressor-assisted Triple-effect
H2O/LiBr Absorption Cooling Cycles”, Applied Thermal Engineering, Vol. 22, pp. 295-
308, (2002).
[8] Ramesh Kumar, A., and Udayakumar, M., “Simulation Studies on GAX Absorption
Compression Cooler”, Energy Conversion and Management, Vol. 48, pp. 2604-2610,
(2007).
[9] Yari, M., Zarin, A., and Mahmoudi, S.M.S., “Energy and Exergy Analyses of GAX and
GAX Hybrid Absorption Refrigeration Cycles”, Renewable Energy, Vol. 36, pp. 2011-
2020, (2011).
[10] Ayala, R., Heard, C.L., and Holland, F.A. “Ammonia/lithium Nitrate Absorption/
compression Refrigeration Cycle Part I Simulation”, Applied Thermal Engineering, Vol.
17, pp. 223-233, (1997).
[11] Ventas, R., Lecuona, A., Zacarías, A., and Venegas, M., “Ammonia-lithium Nitrate
Absorption Chiller with an Integrated Low-pressure Compression Booster Cycle for Low
Driving Temperatures”, Applied Thermal Engineering, Vol. 30, pp. 1351-1359, (2010).
[12] Satapathy, P.K., Gopal, M.R., and Arora, R.C., “Studies on a Compression-absorption
Heat Pump for Simultaneous Cooling and Heating”, International Journal of Energy
Research, Vol. 28, pp. 567-580, (2004).
[13] Berlitz, T., Cerkvenik, B., Hellmann, H. M., and Ziegler, F., “The Impact of Work Input
to Sorption Cycles”, International Journal of Refrigeration, Vol. 24, pp. 88-99, (2001).
[14] Farshi, L.G., and Dousti, A., “Investigation of a Novel Absorption-recompression
Refrigeration System using a Compressor Between Generator and Condenser”, Tabriz
Mechanical Engineering Journal, Vol. 47, pp. 239-246, (2017).(in Persian)
[15] Meng, X., Zheng, D., Wang, J., and Li, X., “Energy Saving Mechanism Analysis of the
Absorption-compression Hybrid Refrigeration Cycle”, Renewable Energy, Vol. 57, pp.
43-50, (2013).
[16] Boer, D., Valles, M., and Coronas, A., “Performance of Double Effect Absorption
Compression Cycles for Air-conditioning using Methanol–TEGDME and TFE–
TEGDME Systems as Working Pairs", International Journal of Refrigeration, Vol. 21, pp.
542-555, (1998).
[17] Wang, J., Wang, B., Wu, W., Li, X., and Shi, W., “Performance Analysis of an Absorption-
Compression Hybrid Refrigeration System Recovering Condensation Heat for
Generation”, Applied Thermal Engineering, Vol. 108, pp. 54-65, (2016).
[18] Farshi, L.G., Khalili, S., and Mosaffa, A.H., “Thermodynamic Analysis of a Cascaded
Compression – Absorption Heat Pump and Comparison with Three Classes of
Conventional Heat Pumps for the Waste Heat Recovery”, Applied Thermal Engineering,
Vol. 128, pp. 282-296, (2018).
[19] Ayou, D.S., Bruno, J.C., and Coronas, A., “Integration of a Mechanical and Thermal
Compressor Booster in Combined Absorption Power and Refrigeration Cycles”, Energy,
Vol. 135, pp. 327-341, (2017).
[20] Zhang, N., Lior, N., and Han, W., “Performance Study and Energy Saving Process
Analysis of Hybrid Absorption-compression Refrigeration Cycles”, Journal of Energy
Resources Technology, Vol. 138, pp. 061603, (2016).
[21] Shu, G., Che, J., Tian, H., Wang, X., and Liu, P., “A Compressor-assisted Triple-effect
H2O-LiBr Absorption Cooling Cycle Coupled with a Rankine Cycle Driven by Hightemperature
Waste Heat”, Applied Thermal Engineering, Vol. 112, pp. 1626-1637, (2017).
[22] Ma, Z., Bao, H., and Roskilly, A.P., “Numerical Study of a Hybrid Absorption-
Compression High Temperature Heat Pump for Industrial Waste Heat Recovery”,
Frontiers in Energy, Vol. 11, pp. 503-509, (2017).
[23] Ahmad Ansari, N., Arora, A., Samsher, and Manjunath, K., “Optimum Performance
Analysis of a Hybrid Cascade Refrigeration System using Alternative Refrigerants”,
Materials Today: Proceedings, Vol. 5, pp. 28374-28383, (2018).
[24] Dixit, M., Arora, A., and Kaushik, S.C., “Energy, Exergy, Environment and Economic
Analyses and Optimization of Two-stage Absorption–compression Combined
Refrigeration System”, Clean Technologies and Environmental Policy, Vol. 19, pp. 2215-
2229, (2017).
[25] Cimsit, C., and Ozturk, I.T., “Analysis of Compression–absorption Cascade Refrigeration
Cycles”, Applied Thermal Engineering, Vol. 40, pp. 311-317, (2012).
[26] Cimsit, C., Ozturk, I., and Hosoz, M., “Second Law Based Thermodynamic Analysis of
Compression-absorption Cascade Refrigeration Cycles”, J. Therm. Sci. Technol, Vol. 34,
pp. 9-18, (2014).
[27] Patel, B., Kachhwaha, S.S., and Modi, B., “Thermodynamic Modelling and Parametric
Study of a Two Stage Compression-Absorption Refrigeration System for Ice Cream
Hardening Plant”, Energy Procedia, Vol. 109, pp. 190-202, (2017).
[28] Jain, V., Sachdeva, G., and Kachhwaha, S.S., “Comparative Performance Study and
Advanced Exergy Analysis of Novel Vapor Compression-absorption Integrated
Refrigeration System”, Energy Conversion and Management, Vol. 172, pp. 81-97, (2018).
[29] Lijuan, H.,Wang, S., Suxia, L., and Xuan, W., “Numerical and Experimental Evaluation
of the Performance of a Coupled Vapour Absorption-compression Refrigeration
Configuration”, International Journal of Refrigeration, Vol. 99, pp. 429-439, (2019).
[30] Patel, B., Desai, N.B., and Kachhwaha, S.S., “Optimization of Waste Heat Based Organic
Rankine Cycle Powered Cascaded Vapor Compression-absorption Refrigeration System”,
Energy Conversion and Management, Vol. 154, pp. 576-590, (2017).
[31] Hojjat Mohammadi, S.M., and Ameri, M., “Energy and Exergy Comparison of a Cascade
Air Conditioning System using Different Cooling Strategies”, International Journal of
Refrigeration, Vol. 41, pp. 14-26, (2014).
[32] Jain, V., Sachdeva, G., and Kachhwaha, S.S., “Thermodynamic Analysis of Ejectorassisted
Vapour Compression–absorption Hybrid Refrigeration System”, International
Journal of Ambient Energy, Vol. 42, pp. 576-585, (2021).
[33] Kairouani, L., and Nehdi, E., “Cooling Performance and Energy Saving of a Compression–
absorption Refrigeration System Assisted by Geothermal Energy”, Applied Thermal
Engineering, Vol. 26, pp. 288-294, (2006).
[34] Garimella, S., Brown, A.M., and Nagavarapu, A.K., “Waste Heat Driven
Absorption/vapor-compression Cascade Refrigeration System for Megawatt Scale, Highflux,
Low-temperature Cooling”, International Journal of Refrigeration, Vol. 34, pp. 1776-
1785, (2011).
[35] Agarwal, S., Arora, A., and Arora, B.B., “Energy and Exergy Analysis of Vapor
Compression–triple Effect Absorption Cascade Refrigeration System”, Engineering
Science and Technology, An International Journal, Vol. 23, pp. 625-641, (2020).
[36] Kotas, T.J., “The Exergy Method of Thermal Plant Analysis”, Krieger Publishing
Company, Malabar, Florida, (1995).
[37] Jain, V., Sachdeva, G., and Kachhwaha, S.S., “NLP Model Based Thermoeconomic
Optimization of Vapor Compression–absorption Cascaded Refrigeration System”, Energy
Conversion and Management, Vol. 93, pp. 49-62, (2015).
[38] Florides, G.A., Kalogirou, S.A., Tassou, S.A., and Wrobel, L.C., “Design and Construction
of a LiBr–water Absorption Machine”, Energy Conversion and Management, Vol. 44, pp.
2483-2508, (2003).
[39] Jain, V., Sachdeva, G., and Kachhwaha, S.S., “Energy, Exergy, Economic and
Environmental (4E) Analyses Based Comparative Performance Study and Optimization of
Vapor Compression-absorption Integrated Refrigeration System”, Energy, Vol. 91, pp.
816-832, (2015).
[40] Kızılkan, Ö., Şencan, A., and Kalogirou, S.A., “Thermoeconomic Optimization of a LiBr
Absorption Refrigeration System”, Chemical Engineering and Processing: Process
Intensification, Vol. 46, pp. 1376-1384, (2007).
[41] Sayyaadi, H., and Nejatolahi, M., “Multi-objective Optimization of a Cooling Tower
Assisted Vapor Compression Refrigeration System”, International Journal of
Refrigeration, Vol. 34, pp. 243-256, (2011).
[42] Rubio-Maya, C., Pacheco-Ibarra, J.J., Belman-Flores, J.M., Galván-González, S.R., and
Mendoza-Covarrubias, C., “NLP Model of a LiBr–H2O Absorption Refrigeration System
for the Minimization of the Annual Operating Cost”, Applied Thermal Engineering, Vol.
37, pp. 10-18, (2012).
[43] Aminyavari, M., Najafi, B., Shirazi, A., and Rinaldi, F., “Exergetic, Economic and
Environmental (3E) Analyses, and Multi-objective Optimization of a CO2/NH3 Cascade
Refrigeration System”, Applied Thermal Engineering, Vol. 65, pp. 42-50, (2014).
[44] Colorado-Garrido, D., “Advanced Exergy Analysis of a Compression–absorption Cascade
Refrigeration System”, Journal of Energy Resources Technology, Vol. 141, pp. 042002,
(2018).