طراحی کنترل کننده برای مدل غیرخطی کوادروتور با استفاده از فیدبک خطی ساز و PID مرتبه کسری با تنظیم بر اساس تئوری شبکه عصبی

نوع مقاله : مقاله علمی پژوهشی

نویسنده

استادیار، گروه خلبانی، دانشکده مهندسی و پرواز، دانشگاه امام علی (ع)، تهران

چکیده

در این تحقیق برای کنترل سیستم غیر خطی کوادروتور از روش پس خوراند خطی ساز بر اساس دینامیک سیستم استفاده شده است. برای تنظیم موقعیت کواد روتور از کنترل کننده ترکیبی PID مرتبه کسری استفاده می‌شود. همچنین از شبکه‌های عصبی برای تنظیم ضرایب کنترل کننده ترکیبی استفاده شده که برای بروز رسانی وزن‌های شبکه از الگوریتم پس انتشار خطا بهره برده‌ایم. در این مقاله برای غلبه بر مشکلات پیاده سازی عملگر مرتبه کسری از تقریب بهینه اوستالوپ برای تخمین و پیاده‌سازی عملگر کسری استفاده می‌شود. درنهایت نتایج شبیه‌سازی برای بررسی دقت روش ارائه‌شده و همچنین مقاومت آن ارائه می‌شوند.

کلیدواژه‌ها

موضوعات


[1] Bluteau, B., Briand, R., and Patrouix,O., “Design and Control of an Outdoor Autonomous
Quadrotor Powered by a Four Strokes RC Engine”, IECON 32nd Annual Conference on
IEEE Industrial Electronics, pp. 4136-4240, Paris, France, (2006).
[2] Bouabdallah, S., Murrieri, P., and Siegwart, R., “Design and Control of an Indoor Micro
Quadrotor”, IEEE International Conference on Robotics and Automation, Proceedings.
ICRA ’04, Vol. 5, pp. 4393-4398, New Orleans, LA, USA, (2004).
[3] Park, S., Won, D. H., Kang, M. S. T., Kim, J., Lee, H. G., and Kwon, S. J., “RIC (Robust
Internal-loop Compensator) Based Flight Control of a Quad-rotor Type UAV”, IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 3542-3547, Edmonton,
AB, Canada, (2005).
[4] Altug, E., Ostrowski, J. P., and Mahony, R., “Control of a Quadrotor Helicopter using
Visual Feedback”, in Proceedings IEEE International Conference on Robotics and
Automation (Cat. No.02CH37292), Vol. 1, pp. 72-77, Washington, DC, USA, (2002).
[5] Mokhtari, A., Benallegue, A., and Daachi, B., “Robust Feedback Linearization and GH/sub
/spl infin// Controller for a Quadrotor Unmanned Aerial Vehicle”, IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 1198-1203, Edmonton, AB, Canada,
(2005).
[6] Efe, M. Ö., “Integral Sliding Mode Control of a Quadrotor with Fractional Order Reaching
Dynamics”, Trans. Inst. Meas. Control, Vol. 33, No. 8, pp. 985-1003, Dec, (2011).
[7] Efe, M. Ö., “Neural Network Assisted Computationally Simple PID Control of a Quadrotor
UAV”, IEEE Trans. Ind. Informatics, Vol. 7, No. 2, pp. 354-361, May, (2011).
[8] Salih, A., Moghavvemi, L., Mohamed, H, A., and Gaeid, K, S., “Flight PID Controller
Design for a UAV Quadrotor”, Sci. Res. Essays, Vol. 5, No. 23, pp. 3660-3667, (2010).
[9] Nguyen Duc, M., Trong, T. N., and Xuan, Y. S., “The Quadrotor MAV System using PID
Control”, IEEE International Conference on Mechatronics and Automation (ICMA), pp.
506-510, Beijing, China, (2015).
[10] Bouabdallah, S., Noth, A., and Siegwart, R., “PID vs LQ Control Techniques Applied to
an Indoor Micro Quadrotor”, IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) (IEEE Cat. No.04CH37566), Vol. 3, pp. 2451-2456, Sendai, Japan,
(2004).
[11] Li, J., and Li, Y., “Dynamic Analysis and PID Control for a Quadrotor”, IEEE International
Conference on Mechatronics and Automation, pp. 573-578, Beijing, China, (2001).
[12] Tavazoei, M.S., and Tavakoli-Kakhki, M., “Compensation by Fractional-order Phaselead/
lag Compensators”, IET Control Theory Appl., Vol. 8, No. 5, pp. 319-329, Mar,
(2014).
[13] Luo, Y., and Chen,Y., “Stabilizing and Robust Fractional Order PI Controller Synthesis
for First Order Plus Time Delay Systems”, Automatica, Vol. 48, No. 9, pp. 2159-2167,
Sep, (2012).
[14] Ebrahimkhani, S., “Robust Fractional Order Sliding Mode Control of Doubly-fed
Induction Generator (DFIG)-based Wind Turbines”, ISA Trans., Vol. 63, pp. 343-354,
Jul, (2016).
[15] Yin, C., Cheng, Y., Chen, Y., Stark, B., and Zhong, S., “Adaptive Fractional-order
Switching-type Control Method Design for 3D Fractional-order Nonlinear Systems”,
Nonlinear Dyn., Vol. 82, No. 1-2, pp. 39-52, Oct, (2015).
[16] Sheng, D., Wei, Y., Cheng, S., and Wang, Y., “Observer-based Adaptive Backstepping
Control for Fractional Order Systems with Input Saturation”, ISA Trans., Vol. 82, pp. 18-
29, Nov, (2018).
[17] Liu, L., Pan, F., Xue, D., “Variable-order Fuzzy Fractional PID Controller”, ISA Trans.,
Vol. 55, pp. 227-233, Mar, (2015).
[18] Jesus, I, S., and Barbosa, R, S., “Genetic Optimization of Fuzzy Fractional PD+I
Controllers”, ISA Trans., Vol. 57, pp. 220-230, Jul, (2015).
[19] Faieghi, M, R., Delavari, H., and Baleanu, D., “Control of an Uncertain Fractional-order
Liu System Via Fuzzy Fractional-order Sliding Mode Control”, J. Vib. Control, Vol. 18,
No. 9, pp. 1366-1374, Aug, (2012).
[20] Podlubny, I., “Fractional-order Systems and PID Controllers”, IEEE Trans. Automat.
Contr., Vol. 44, No. 1, pp. 208-214, Jan, (1999).
[21] Badri, V., and Tavazoei, M. S., “On Tuning Fractional Order [Proportional-Derivative]
Controllers for a Class of Fractional Order Systems”, Automatica, Vol. 49, No. 7, pp.
2297-2301, Jul, (2013).
[22] Li, H., Luo, Y., and Chen, Y., “A Fractional Order Proportional and Derivative (FOPD)
Motion Controller: Tuning Rule and Experiments”, IEEE Trans. Control Syst. Technol.,
Vol. 18, No. 2, pp. 516-520, Mar, (2010).
[23] Padula, F., and Visioli, A., “Tuning Rules for Optimal PID and Fractional-order PID
Controllers”, J. Process Control, Vol. 21, No. 1, pp. 69-81, Jan, (2011).
[24] Valério, D., and da Costa, J, S., “Tuning of Fractional PID Controllers with Ziegler–
Nichols-type Rules”, Signal Processing, Vol. 86, No. 10, pp. 2771-2784, Oct, (2006).
[25] Monje, C, A., Vinagre, M., Feliu, V., and Chen, Y., “Tuning and Auto-tuning of Fractional
Order Controllers for Industry Applications”, Control Eng. Pract., Vol. 16, No. 7, pp. 798-
812, Jul, (2008).
[26] Vinagre, B, M., Monje, C, A., Calderón, A, J., and Suárez, J, I., “Fractional PID
Controllers for Industry Application. A Brief Introduction”, J. Vib. Control, Vol. 13, No.
9-10, pp. 1419-1429, Sep, (2007).
[27] Asgharnia, A., Shahnazi, R., and Jamali, A., “Performance and Robustness of Optimal
Fractional Fuzzy PID Controllers for Pitch Control of a Wind Turbine using Chaotic
Optimization Algorithms”, ISA Trans., Vol. 79, pp. 27-44, Aug, (2018).
[28] Zamani, A., Barakati, S. M., and Yousofi-Darmian, S., “Design of a Fractional Order PID
Controller using GBMO Algorithm for Load-frequency Control with Governor Saturation
Consideration”, ISA Trans., Vol. 64, pp. 56-66, Sep, (2016).
[29] Verma, S, K., Yadav, S., and Nagar, S. K., “Optimization of Fractional Order PID
Controller using Grey Wolf Optimizer”, J. Control. Autom. Electr. Syst., Vol. 28, No. 3,
pp. 314-322, Jun, (2017).
[30] Ren, M., and Rad, A. B., “Adaptive Non-linear Compensation Control Based on Neural
Networks for Non-linear Systems with Time Delay”, Int. J. Syst. Sci., Vol. 40, No. 12, pp.
1283-1292, Dec, (2009).
[31] Stogiannos, M., Alexandridis, A., and Sarimveis, H., “Model Predictive Control for
Systems with Fast Dynamics using Inverse Neural Models”, ISA Trans., Vol. 72, pp. 161-
177, Jan, (2018).
[32] Milovanović, M.B., Antić, D.S., Milojković, M.T., Nikolić, S.S., Perić, S.L., and Spasić,
M. D., “Adaptive PID Control Based on Orthogonal Endocrine Neural Networks”, Neural
Networks, Vol. 84, pp. 80-90, Dec, (2016).
[33] Sharma, R., Kumar, V., Gaur, P., and Mittal, A. P., “An Adaptive PID Like Controller
using Mix Locally Recurrent Neural Network for Robotic Manipulator with Variable
Payload”, ISA Trans., Vol. 62, pp. 258-267, May, (2016).
[34] Wen, Yu., and Rosen, J., “Neural PID Control of Robot Manipulators with Application to
an Upper Limb Exoskeleton”, IEEE Trans. Cybern., Vol. 43, No. 2, pp. 673-684, Apr,
(2013).
[35] Ou, B., Song, L., and Chang, C., “Tuning of Fractional PID Controllers by using Radial
Basis Function Neural Networks”, IEEE ICCA, pp. 1239-1244, Xiamen, China, (2010).
[36] Shan, W., and Tang, W., “A Neural Network Fractional Order PID Controller for FOLPD
Process”, 35th Chinese Control Conference (CCC), pp. 10459-10463, Chengdu, China,
(2016).
[37] Mokhtari, A., M’Sirdi, N. K., Meghriche, K., and Belaidi, A., “Feedback Linearization and
Linear Observer for a Quadrotor Unmanned Aerial Vehicle”, Adv. Robot., Vol. 20, No. 1,
pp. 71-91, Jan, (2006).
[38] Rumelhart, D., and McClelland, J., "Parallel Distributed Processing : Explorations in the
Microstructure of Cognition, MIT Press, California,(1986).
[39] Xue, D., Zhao, C., and Chen, Y., “A Modified Approximation Method of Fractional Order
System”, International Conference on Mechatronics and Automation, pp. 1043-1048,
Luoyang, China, (2006).