بررسی تحلیلی، عددی و تجربی خمش سه نقطه ای تیر های ساندویچی ساخته شده با چاپگر سه بعدی

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه مکانیک، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی تهران مرکزی، تهران، ایران

2 دانشیار، گروه مهندسی پزشکی، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد تهران مرکزی، تهران، ایران

چکیده

این تحقیق روی ارزیابی تیر های ساندویچی تحت خمش سه نقطه ای تمرکز دارد. سه تیر ساندویچی متشکل از هسته های هانی کامب، بتا و آلفا با ضخامت رویه یکسان چاپ سه بعدی شده اند. تئوری مرتبه بالا توسعه یافته تیر ساندویچی در راستای تحلیل استاتیکی خمش سه نقطه ای تیر ها مذکور برای اولین بار توسط این پژوهش بکار گرفته شده است. به منظور مقایسه نتایج تئوری، شبیه سازی عددی در نرم افزار آباکوس و آزمایشات تجربی انجام شد. نتایج تئوری با خطای کمتر از 5 درصد از آزمایشات تجربی پیروی می کند. دستاورد های بدست آمده از این مطالعه دقیق بینشی جدید را در راستای پیش بینی رفتار الاستیک تیر های ساندویچی چاپ سه بعدی شده ارائه می دهد.

کلیدواژه‌ها

موضوعات


[1] Soltani, A., Noroozi, R., Bodaghi, M., Zolfagharian, A., and Hedayati, R., "3D Printing On-water Sports Boards with Bio-inspired Core Designs", Polymers, Vol. 12(1), pp. 250, (2020).
[2] Pridmore, A., "The Life of George Stephenson", 1st Edition, Teaching History, London, pp. 16–18, (1979).
[3] Smiles, S., "Lives of the Engineers: The Locomotive: George and Robert Stephenson", 5th Edition, John Murray, London, pp. 125, (1879).
[4] Alshaer, A.W., and Harland, D.J., "An Investigation of the Strength and Stiffness of Weight-saving Sandwich Beams with CFRP Face Sheets and Seven 3D Printed Cores", Composite Structures, Vol. 257, Article Number. 113391, (2021).
[5] Smardzewski, J., and Wojciechowski, K.W., "Response of Wood-based Sandwich Beams with Three-dimensional Lattice Core", Composite Structures, Vol. 216, pp. 340-349, (2019).
[6] Li, T., and Wang, L., "Bending Behavior of Sandwich Composite Structures with Tunable 3D-printed Core Materials", Composite Structures, Vol. 175, pp. 46-57, (2017).
[7] Sarvestani, H.Y., Akbarzadeh, A.H., Niknam, H., and Hermenean, K., "3D Printed Architected Polymeric Sandwich Panels: Energy Absorption and Structural Performance", Composite Structures, Vol. 200, pp. 886–909, )2018(.
[8] Sun, S., Liu, D., Sheng, Y., Feng, S., Zhu, H., and Lu, T.J., "Out-of-plane Compression of a Novel Hybrid Corrugated Core Sandwich Panel", Composite Structures, Vol. 272, Article Number. 114222, (2021).
[9] Spahic, M., Di Cesare, N., Le Duigou, A., and Keryvin, V., "Multi-scale Analysis of the Flexural Behaviour of 3D Printed Cellular Polymer Materials: Comparison between Morphing and Sandwich Beams", Composite Structures, Vol. 273, Article Number. 114249, (2021).
[10] Khan, M.K., Baig, T., and Mirza, S., "Experimental Investigation of In-plane and Out-of-plane Crushing of Aluminum Honeycomb", Materials Science and Engineering, Vol. 539, pp. 135-142, (2012).
[11] Harland, D., Alshaer, A.W., and Brooks, H., "An Experimental and Numerical Investigation of a Novel 3D Printed Sandwich Material for Motorsport Applications", Procedia Manufacturing, Vol. 36, pp. 11–18, (2019).
[12] Zaharia, S.M., Enescu, L.A., and Pop, M.A., "Mechanical Performances of Lightweight Sandwich Structures Produced by Material Extrusion-based Additive Manufacturing", Polymers, Vol. 12, pp. 1740, (2020).
[13] Indreș, A.I., Constantinescu, D.M., and Mocian, O.A., "Bending Behavior of 3D Printed Sandwich Beams with Different Core Topologies", Material Design and Processing Communications, Vol. 3, pp. 1-8, (2021).
[14] Zhang, Z., Lei, H., Xu, M., Hua, J., Li, C., and Fang, D., "Out-of-plane Compressive Performance and Energy Absorption of Multi-layer Graded Sinusoidal Corrugated Sandwich Panels", Materials and Design, Vol. 178, Article Number. 107858, (2019).
[15] Geramizadeh, H., Dariushi, S., and Jedari Salami, S., "Optimal Face Sheet Thickness of 3D Printed Polymeric Hexagonal and Re-entrant Honeycomb Sandwich Beams Subjected to Three-point Bending", Composite Structures, Vol. 291, Article Number. 115618, (2022).
[16] Ghazlan, A., Nguyen, T., Ngo, T., and Linforth, S., "Performance of a 3D Printed Cellular Structure Inspired by Bone", Thin-walled Structures, Vol. 151, Article Number. 106713, (2020).
[17] Ge, C., Cormier, D., and Rice, B., "Damping and Cushioning Characteristics of Polyjet 3D Printed Photopolymer with Kelvin Model", Journal of Cellular Plastics, Vol. 57, pp. 517-534, (2021).
[18] Jin, S., Korkolis, Y.P., and Li, Y., "Shear Resistance of an Auxetic Chiral Mechanical Metamaterial", International Journal of Solids and Structures, Vol. 174, pp. 28-37, (2019).
[19] Geramizadeh, H., Dariushi, S., and Jedari Salami, S., "Numerical and Experimental Investigation for Enhancing the Energy Absorption Capacity of the Novel Three-dimensional Printed Sandwich Structures", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, Vol. 235(7), pp. 1622-1634, (2021).
[20] Unlusoy, C., and Melenka, G.W., "Flexural Testing of Cellulose Fiber Braided Composites using Three Dimensional Digital Image Correlation", Composite Structures, Vol. 230, Article Number. 111538, (2019).
[21] Sarvestani, H.Y., Akbarzadeh, A.H., Mirbolghasemi, A., and Hermenean, K., "3D Printed Meta-sandwich Structures: Failure Mechanism, Energy Absorption and Multi-hit Capability", Materials and Design, Vol. 160, pp. 179–193, (2018).
[22] Ghavidelnia, N., Jedari Salami, S., and Hedayati, R., "Analytical Relationships for Yield Stress of Five Mechanical Meta-biomaterials", Mechanics Based Design of Structures and Machines, Vol. 50(10), pp. 3452-3474, (2020).
[23] Hedayati, R., Jedari Salami, S., Li, Y., Sadighi, M., and Zadpoor, A.A., "Semianalytical Geometry-property Relationships for Some Generalized Classes of Pentamodelike Additively Manufactured Mechanical Metamaterials", Physical Review Applied, Vol. 11(3), pp. 034057, (2019).
[24] Shang, X., Liu, L., Rafsanjani, A., and Pasini, D., "Durable Bistable Auxetics Made of Rigid Solids", Journal of Materials Research, Vol. 33(3), pp. 300-308, (2018).
[25] Timoshenko, S.P., "X. on the Transverse Vibrations of Bars of Uniform Cross-section", the London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 41(253), pp. 744–746, (1922).
[26] Timoshenko, S., and Goodier, J.N., "Theory of Elasticity", 1st Edition, McGraw-Hill, New York, pp. 35, (1951).
[27] Babaei, M., Asemi, K., and Safarpour, P., "Buckling and Static Analyses of Functionally Graded Saturated Porous Thick Beam Resting on Elastic Foundation Based on Higher Order Beam Theory", Iranian Journal of Mechanical Engineering Transactions of the ISME, Vol. 20(1), pp. 94–112, (2019).
[28] Babaei, M., Asemi, K., and Safarpour, P., "Natural Frequency and Dynamic Analyses of Functionally Graded Saturated Porous Beam Resting on Viscoelastic Foundation Based on Higher Order Beam Theory", Journal of Solid Mechanics, Vol. 11(3), pp. 615–634, (2019).
[29] Frostig, Y.B.M.V.O.S.I., Baruch, M., Vilnay, O., and Sheinman, I., "High‐order Theory for Sandwich‐beam Behavior with Transversely Flexible Corev", Journal of Engineering Mechanics, Vol. 118 (5), pp. 1026–1043, (1992).
[30] Carlsson, L.A., and Kardomateas, G.A., "Structural and Failure Mechanics of Sandwich Composites", 1st Edition, Springer Science and Business Media, Berlin, pp. 145, (2011).
[31] Jones, R.M., "Mechanics of Composite Materials", 2nd Edition, Taylor and Francis, Philadelphia, pp. 132, (1999).
[32] Jedari Salami, S., Sadighi, M., and Shakeri, M., "Improved Extended High Order Analysis of Sandwich Beams with a Bilinear Core Shear Behavior", Journal of Sandwich Structures and Materials, Vol. 16(6), pp. 633–668, (2014).
[33] Reddy, J.N., "Mechanics of Laminated Composite Plates and Shells: Theory and Analysis", 2nd Edition, CRC Press, Florida, pp. 671, (2003).
[34] Jedari Salami, S., "Extended High Order Sandwich Panel Theory for Bending Analysis of Sandwich Beams with Carbon Nanotube Reinforced Face Sheets", Physica E: Lowdimensional Systems and Nanostructures, Vol. 76, pp. 187–197, (2016).
[35] Song, Y.S., and Youn, J.R., "Modeling of Effective Elastic Properties for Polymer Based Carbon Nanotube Composites", Polymer, Vol. 47(5), pp. 1741–1748, (2006).
[36] Salazar-Martín, A.G., Pérez, M.A., García-Granada, A.A., Reyes, G., and Puigoriol- Forcada, J.M., "A Study of Creep in Polycarbonate Fused Deposition Modelling Parts", Materials and Design, Vol. 141, pp. 414–425, (2018).
[37] Khosravani, M.R., Zolfagharian, A., Jennings, M., and Reinicke, T., "Structural Performance of 3D-printed Composites under Various Loads and Environmental Conditions", Polymer Testing, Vol. 91, Article Number. 106770, (2020).