بررسی کمانش میکرو-ورق تقویت شده با گرافن با لایه‌های پیزوالکتریک

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دکترا، دانشکده فنی و مهندسی، دانشگاه شهرکرد، شهرکرد

2 نویسنده مسئول، دانشیار، دانشکده فنی و مهندسی، دانشگاه شهرکرد، شهرکرد

چکیده

در این مقاله کمانش میکرو-ورق مدرج تابعی تقویت شده با صفحات کوچک گرافن با لایه ‌های پیزوالکتریک بر اساس تئوری تنش کوپل اصلاح شده مورد بررسی قرار می‌گیرد. تغییرات درجه حرارت به ‌صورت یکنواخت و میدان الکتریکی خارجی ثابتی در راستای ضخامت، بر میکرو-ورق اعمال شده است. نیروی مکانیکی درون صفحه‌ای خارجی به صورت یکنواخت بر روی لبه ‌های میکرو-ورق توزیع شده است. خواص هر لایه کامپوزیت تقویت شده با صفحات کوچک گرافن، با استفاده از مدل میکرومکانیکی هالپین-تسای محاسبه گردیده است. اثر پارامترهای مختلف هندسی و کسر وزنی گرافن بر کمانش میکرو-ورق مدل شده مورد بررسی قرار گرفته است.

کلیدواژه‌ها

موضوعات


[1] Liew, K.M., Yang, J., and Kitipornchai, S., "Postbuckling of Piezoelectric FGM Plates Subject to Thermo-electro-mechanical Loading ", International Journal of Solids and Structures, Vol. 40, No. 15, pp. 3869-3892, (2003).
[2] Matsunaga, H., "Thermal Buckling of Functionally Graded Plates According to a 2D Higher-order Deformation Theory", Composite Structures, Vol. 90, No. 1, pp. 76-86, (2009).
[3] Mirzavand, B., and Eslami, M.R., "A Closed-form Solution for Thermal Buckling of Piezoelectric FGM Rectangular Plates with Temperature-dependent Properties", Acta Mechanica, Vol. 218, No. 1, pp. 87-101, (2011).
[4] Kiani, Y., Bagherizadeh, E., and Eslami, M.R., "Thermal and Mechanical Buckling of Sandwich Plates with FGM Face Sheets Resting on the Pasternak Elastic Foundation", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 226, No. 1, pp. 32-41, (2012).
[5] Ke, L.L., Yang, J., Kitipornchai, S., and Bradford, M.A., "Bending, Buckling and Vibration of Size-dependent Functionally Graded Annular Microplates", Composite Structures, Vol. 94, No. 11, pp. 3250-3257, (2012).
[6] Kettaf, F.Z., Houari, M.S.A., Benguediab, M., and Tounsi, A., "Thermal Buckling of Functionally Graded Sandwich Plates using a New Hyperbolic Shear Displacement Model", Steel and Composite Structures, Vol. 15, No. 4, pp. 399-423, (2013).
[7] Ansari, R., Gholami, R., Faghih Shojaei, M., Mohammadi, V., and Darabi, M.A., "Thermal Buckling Analysis of a Mindlin Rectangular FGM Microplate Based on the Strain Gradient Theory", Journal of Thermal Stresses, Vol. 36, No. 5, pp. 446-465, (2013).
[8] Yaghoobi, H., Fereidoon, A., Khaksari Nouri, M., and Mareishi, S., "Thermal Buckling Analysis of Piezoelectric Functionally Graded Plates with Temperature-dependent Properties", Mechanics of Advanced Materials and Structures, Vol. 22, No. 10, pp. 864-875, (2015).
[9] Mohammadi, M., and Mahani, M.F., "An Analytical Solution for Buckling Analysis of Size-dependent Rectangular Micro-plates According to the Modified Strain Gradient and Couple Stress Theories", Acta Mechanica, Vol. 226, No. 10, pp. 3477-3493, (2015).
[10] Ansari, R.E.Z.A., Hasrati, E.M.A.D., Faghih Shojaei, M., Gholami, R.A.H.E.B., Mohammadi, V.A.H.I.D., and Shahabodini, A.B.O.L.F.A.Z.L., "Size-dependent Bending, Buckling and Free Vibration Analyses of Microscale Functionally Graded Mindlin Plates Based on the Strain Gradient Elasticity Theory", Latin American Journal of Solids and Structures, Vol. 13, No. 4, pp. 632-664, (2016).
[11] Wu, H., Kitipornchai, S., and Yang, J., "Thermal Buckling and Postbuckling of Functionally Graded Graphene Nanocomposite Plates", Materials and Design, Vol. 132, pp. 430-441, (2017).
[12] Shen, H.S., Xiang, Y., Lin, F., and Hui, D., "Buckling and Postbuckling of Functionally Graded Graphene-reinforced Composite Laminated Plates in Thermal Environments", Composites Part B: Engineering, Vol. 119, pp. 67-78, (2017).
[13] Barati, M.R., and Zenkour, A.M., "Post-buckling Analysis of Refined Shear Deformable Graphene Platelet Reinforced Beams with Porosities and Geometrical Imperfection", Composite Structures, Vol. 181, pp. 194-202, (2017).
[14] Yang, J., Chen, D., and Kitipornchai, S., "Buckling and Free Vibration Analyses of Functionally Graded Graphene Reinforced Porous Nanocomposite Plates Based on Chebyshev-ritz Method", Composite Structures, Vol. 193, pp. 281-294, (2018).
[15] Aghazadeh, R., Dag, S., and Cigeroglu, E., "Modelling of Graded Rectangular Micro-plates with Variable Length Scale Parameters", Structural Engineering and Mechanics, Vol. 65, No. 5, pp. 573-585, (2018).
[16] Lei, Z., and Zhang, Y., "Characterizing Buckling Behavior of Matrix-cracked Hybrid Plates Containing CNTR-FG Layers", Steel and Composite Structures, Vol. 28, No. 4, pp. 495-508, (2018).
[17] Choudhary, P.K., and Jana, P., "Position Optimization of Circular/elliptical Cutout within an Orthotropic Rectangular Plate for Maximum Buckling Load", Steel and Composite Structures, Vol. 29, No. 1, pp. 39-51, (2018).
[18] Jiang, G., Li, F., and Zhang, C., "Postbuckling and Nonlinear Vibration of Composite Laminated Trapezoidal Plates", Steel and Composite Structures, Vol. 26, No. 1, pp. 17-29, (2018).
[19] Song, M., Yang, J., and Kitipornchai, S., "Bending and Buckling Analyses of Functionally Graded Polymer Composite Plates Reinforced with Graphene Nanoplatelets", Composites Part B: Engineering, Vol. 134, pp. 106-113, (2018).
[20] Javani, R., Bidgoli, M.R., and Kolahchi, R., "Buckling Analysis of Plates Reinforced by Graphene Platelet Based on Halpin-Tsai and Reddy Theories", Steel and Composite Structures, Vol. 31, No. 4, pp. 419-426, (2019).
[21] Shahverdi, H., Barati, M.R., and Hakimelahi, B., "Post-buckling Analysis of Honeycomb Core Sandwich Panels with Geometrical Imperfection and Graphene Reinforced Nano-composite Face Sheets", Materials Research Express, Vol. 6, No. 9, pp. 095017, (2019).
[22] Mirjavadi, S.S., Forsat, M., Hamouda, A.M.S., and Barati, M.R., "Dynamic Response of Functionally Graded Graphene Nanoplatelet Reinforced Shells with Porosity Distributions under Transverse Dynamic Loads", Materials Research Express, Vol. 6, No. 7, pp. 075045, (2019).
[23] Barati, M.R., and Shahverdi, H., "Finite Element Forced Vibration Analysis of Refined Shear Deformable Nanocomposite Graphene Platelet-reinforced Beams", Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 42, No. 1, pp. 33, (2020).
[24] Arvin, H., "The Flapwise Bending Free Vibration Analysis of Micro-rotating Timoshenko Beams using the Differential Transform Method", Journal of Vibration and Control, Vol. 24, No. 20, pp. 4868-4884, (2018).
[25] Reddy, J.N., "Mechanics of Laminated Composite Plates and Shells: Theory and Analysis", Second Edition, Florida, CRC Press, (2003).
[26] Huang, Y., Yang, Z., Liu, A., and Fu, J., "Nonlinear Buckling Analysis of Functionally Graded Graphene Reinforced Composite Shallow Arches with Elastic Rotational Constraints under Uniform Radial Load", Materials, Vol. 11, No. 6, pp. 910, (2018).
[27] Wang, Q., "On Buckling of Column Structures with a Pair of Piezoelectric Layers", Engineering Structures, Vol. 24, No. 2, pp. 199-205, (2002).
[28] Meirovitch, L., "Principles and Techniques of Vibrations", New York, McGraw Hill, (1997).
[29] Shariyat, M., "Dynamic Buckling of Imperfect Laminated Plates with Piezoelectric Sensors and Actuators Subjected to Thermo-electro-mechanical Loadings, Considering the Temperature-dependency of the Material Properties", Composite Structures, Vol. 88, No. 2, pp. 228-239, (2009).