حل تحلیلی جریان و انتقال حرارت در مبدل حرارتی سه لوله‌ای نیمه ‌متخلخل مرکب از اواپراتور و کندانسور

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مکانیک، واحد تاکستان، دانشگاه آزاد اسلامی، تاکستان، ایران

2 استادیار، گروه مهندسی مکانیک، واحد تاکستان، دانشگاه آزاد اسلامی، تاکستان، ایران

چکیده

در این تحقیق استفاده از فوم فلزی جهت بهبود عملکرد یک مبدل حرارتی سه لوله‌ای مرکب از کندانسور و اواپراتور مورد بررسی قرار گرفته است. برای این منظور با بکارگیری بستر نیمه‌ متخلخل، ضمن افزایش انتقال حرارت، امکان کنترل افت فشار نیز برای طراح فراهم شده است. برای ارزیابی عملکرد این مبدل ابتدا به کمک روش حل تحلیلی روابط هیدرولیکی و حرارتی حاکم بر مسئله بدست آمده و سپس جهت اعتبارسنجی، مدل ‌سازی عددی در نرم افزار انسیس-فلوئنت انجام گرفته است. نتایج نشان داد که عملکرد مبدل حرارتی سه لوله‌ای در حالت نیمه‌متخلخل دارای رشد چشمگیر سه برابری نسبت به حالت غیر متخلخل می‌باشد. همچنین مقدار تخلخل 97/0 بعنوان نقطه بهینه عملکردی و شعاع تخلخل بی‌بعد 78/1 بعنوان شعاع بحرانی هیدرولیکی ارائه گردید.

کلیدواژه‌ها

موضوعات


[1] Emamifar, A., "Energy, Exergy and Economic Analysis of an Improved Hybrid Cascaded Compression-absorption Refrigeration System", Iranian Journal of Mechanical Engineering, Vol. 22(4), pp. 172-204, (2021).
[2] Bhargavi, D., and Kumar Reddy, J.S., "Effect of Heat Transfer in the Thermally Developing Region of the Channel Partially Filled with a Porous Medium: Constant Wall Heat Flux", International Journal of Thermal Sciences, Vol. 130, pp. 484-495, (2018).
[3] Fanaee, S.A., and Rezapour, M., "Analysis of the Fluid-thermal Regime with the Developed Brinkman Model in a Porous Coil for Solar Energy Application", Modares Mechanical Engineering, Vol. 19(4), pp. 855-863, (2019).
[4] Mondal, P.K., "Thermodynamically Consistent Limiting Forced Convection Heat Transfer in a Asymmetrically Heated Porous Channel: An Analytical Study", Transport in Porous Media, Vol. 100(1), pp. 17-37, (2013).
[5] Satyamurty, V.V., and Bhargavi, D., "Forced Convection in Thermally Developing Region of a Channel Partially Filled with a Porous Material and Optimal Porous Fraction", International Journal of Thermal Sciences, Vol. 49(2), pp. 319-332, (2010).
[6] Maghrebi, M.J., Nazari, M., and Armaghani, T., "Forced Convection Heat Transfer of Nanofluids in a Porous Channel", Transport in Porous Media, Vol. 93(3), pp. 401-413, (2012).
[7] Armaghani, T., Chamkha, A.J., Maghrebi, M., and Nazari, M., "Numerical Analysis of a Nanofluid Forced Convection in a Porous Channel: A New Heat Flux Model in LTNE Condition", Journal of Porous Media, Vol. 17(7), pp. 637-646, (2014).
[8] Armaghani, T., Maghrebi, M.J., Chamkha, A.J., and Al-Mudhaf, A.F., "Forced Convection Heat Transfer of Nanofluids in a Channel Filled with Porous Media under Local Thermal Non-equilibrium Condition with Three New Models for Absorbed Heat Flux", Journal of Nanofluids, Vol. 6(2), pp. 362-367, (2017).
[9] Abelman, S., Parsa, A.B., and Sayehvand, H.-O., "Nanofluid Flow and Heat Transfer in a Brinkman Porous Channel with Variable Porosity", Quaestiones Mathematicae, Vol. 41(4), pp. 449-467, (2018).
[10] Kim, W.T., Hong, K.H., Jhon, M.S., VanOsdol, J.G., and Smith, D.H., "Forced Convection in a Circular Pipe with a Partially Filled Porous Medium", KSME International Journal, Vol. 17(10), pp. 1583-1595, (2003).
[11] Hooman, K., and Ejlali, A., "Entropy Generation for Forced Convection in a Porous Saturated Circular Tube with Uniform Wall Temperature", International Communications in Heat and Mass Transfer, Vol. 34(4), pp. 408-419, (2007).
[12] Maerefat, M., Mahmoudi, S.Y., and Mazaheri, K., "Numerical Simulation of Forced Convection Enhancement in a Pipe by Porous Inserts", Heat Transfer Engineering, Vol. 32(1), pp. 45-56, (2011).
[13] Dehghan, M., Jamal-Abad, M.T., and Rashidi, S., "Analytical Interpretation of the Local Thermal Non-equilibrium Condition of Porous Media Imbedded in Tube Heat Exchangers", Energy Conversion and Management, Vol. 85, pp. 264-271, (2014).
[14] Wang, B., Hong, Y., Hou, X., Xu, Z., Wang, P., Fang, X., and Ruan, X., "Numerical Configuration Design and Investigation of Heat Transfer Enhancement in Pipes Filled with Gradient Porous Materials", Energy Conversion and Management, Vol. 105, pp. 206-215, (2015).
[15] Nouri-Borujerdi, A., and Seyyed-Hashemi, M.H., "Numerical Analysis of Thermally Developing Turbulent Flow in Partially Filled Porous Pipes", Scientia Iranica, Vol. 22, pp. 835-843, (2015).
[16] Mitrović, J., and Maletić, B., "Effect of Thermal Asymmetry on Heat Transfer in a Laminar Annular Flow", Chemical Engineering and Technology, 28(10), pp. 1144-1150, (2005).
[17] Mitrovic, J., and Maletic, B., "Effect of Thermal Asymmetry on Laminar Forced Convection Heat Transfer in a Porous Annular Channel", Chemical Engineering and Technology, Vol. 29(6), pp. 750-760, (2006).
[18] Ayoubi Ayoubloo, K., Ghalambaz, M., Armaghani, T., Noghrehabadi, A., and Chamkha, A.J., "Pseudoplastic Natural Convection Flow and Heat Transfer in a Cylindrical Vertical Cavity Partially Filled with a Porous Layer", International Journal of Numerical Methods for Heat and Fluid Flow, Vol. 30(3), pp. 1096-1114, (2020).
[19] Nikian, M., Shokouhmand, H., Khayat, M., and Mohammadzadeh, A., "Experimental Investigation of Two-phase Mist Flow and Heat Transfer in Porous Media", Journal of Porous Media, Vol. 16(8), pp. 695-707, (2013).
[20] Nazari, M., Ashouri, M., Kayhani, M.H., and Tamayol, A., "Experimental Study of Convective Heat Transfer of a Nanofluid through a Pipe Filled with Metal Foam", International Journal of Thermal Sciences, Vol. 88, pp. 33-39, (2015).
[21] Tuyen, V., Van Hap, N., and Phu, N.M., "Thermal-hydraulic Characteristics and Optimization of a Liquid-to-suction Triple-tube Heat Exchanger", Case Studies in Thermal Engineering, Vol. 19, pp. 100635, (2020).
[22] Lu, W., Zhao, C.Y., and Tassou, S.A., "Thermal Analysis on Metal-foam Filled Heat Exchangers, Part I: Metal-foam Filled Pipes", International Journal of Heat and Mass Transfer, Vol. 49(15), pp. 2751-2761, (2006).
[23] BaytaŞ, A.C., and BaytaŞ, A.F., "Entropy Generation in Porous Media", In Ingham, D.B., and Pop, I., (Editors), Transport Phenomena in Porous Media III, Chapter 8, pp. 201-226, Oxford, (2005).
[24] Xu, H.J., Qu, Z.G., and Tao, W.Q., " Numerical Investigation on Self-coupling Heat Transfer in a Counter-flow Double-pipe Heat Exchanger Filled with Metallic Foams ", Applied Thermal Engineering, Vol. 66(1), pp. 43-54, (2014).
[25] Alhusseny, A.N.M., Nasser, A., and Al-zurfi, N.M.J., "High-porosity Metal Foams: Potentials, Applications, and Formulations", In Ghrib, T.H., (Editor), Porosity - Process,
Technologies and Applications, Chapter 8, pp. 181-200, London, http://dx.doi.org/10.5772/intechopen.70451, (2018).
[26] Boomsma, K., and Poulikakos, D., "Corrigendum for the Paper: K. Boomsma, D. Poulikakos, “On the Effective Thermal Conductivity of a Three-dimensionally Structured Fluid-saturated Metal Foam”, International Journal of Heat and Mass Transfer, Vol. 44, pp. 827–836]", (2001).
[27] Xu, Z.G., and Gong, Q., "Numerical Investigation on Forced Convection of Tubes Partially Filled with Composite Metal Foams under Local Thermal Non-equilibrium Condition", International Journal of Thermal Sciences, Vol. 133, pp. 1-12, (2018).